IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9513-d1004147.html
   My bibliography  Save this article

Experimental Evaluation of Shale Oil Development Effectiveness by Air Injection

Author

Listed:
  • Chao Chen

    (Research Institute of Exploration and Development, Xinjiang Oilfield Company, Karamay 834000, China)

  • Xiang Tang

    (China National Oil and Gas Exploration and Development Co., Ltd., Beijing 100070, China)

  • Ming Qin

    (Research Institute of Exploration and Development, Xinjiang Oilfield Company, Karamay 834000, China)

  • Rui Zhou

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
    Petroleum Engineering Institute, China University of Petroleum, Beijing 102249, China)

  • Zhenhua Ding

    (Research Institute of Exploration and Development, Xinjiang Oilfield Company, Karamay 834000, China)

  • Guihui Lian

    (Research Institute of Exploration and Development, Xinjiang Oilfield Company, Karamay 834000, China)

  • Huan Qi

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
    Petroleum Engineering Institute, China University of Petroleum, Beijing 102249, China)

  • Xin Chen

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
    Petroleum Engineering Institute, China University of Petroleum, Beijing 102249, China)

  • Zheyu Liu

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
    Petroleum Engineering Institute, China University of Petroleum, Beijing 102249, China)

  • Yiqiang Li

    (State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
    Petroleum Engineering Institute, China University of Petroleum, Beijing 102249, China)

Abstract

In recent years, as an important part of unconventional resources, the effective development of shale oil has been a key area of research in petroleum engineering. Given the widespread availability and low cost of air, the evaluation of air injection in shale reservoirs is a topic worth exploring. This paper analyzes the production performance of different methods of air injection development in the shale reservoir, including air flooding and air huff and puff (HnP), based on full-diameter core air injection experiments. Meanwhile, the characteristics of the residual oil and produced oil are revealed by forming a systematic evaluation method that includes nuclear magnetic resonance (NMR), laser scanning confocal microscopy (LSCM), and gas chromatographic (GC) analysis. The results show that air flooding development is characterized by early gas breakthrough, long oil production period, and “L” shape oil production decline; while air HnP is characterized by first producing gas and then producing oil, rapid oil production, and high oil recovery efficiency in the first round. Compared with air flooding, the replacement efficiency of the first round of air HnP is significantly higher, demonstrating higher feasibility of air HnP in the early stages of development, although the cumulative recovery of three rounds air HnP (17.17%) is lower than that of air flooding (23.36%). The large pores (T 2 > 10 ms) are the main source of air injection recovery, while the residual oil is mainly concentrated in the medium pores (1–10 ms). Air injection development has a higher recovery factor for light components ( C 15 − ), resulting in a higher level of heavy components in the residual oil. This paper discusses the feasibility and development effectiveness of air injection in shale oil reservoirs, and its development characteristics are further clarified.

Suggested Citation

  • Chao Chen & Xiang Tang & Ming Qin & Rui Zhou & Zhenhua Ding & Guihui Lian & Huan Qi & Xin Chen & Zheyu Liu & Yiqiang Li, 2022. "Experimental Evaluation of Shale Oil Development Effectiveness by Air Injection," Energies, MDPI, vol. 15(24), pages 1-13, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9513-:d:1004147
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9513/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9513/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nguyen, Phong & Carey, J. William & Viswanathan, Hari S. & Porter, Mark, 2018. "Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments," Applied Energy, Elsevier, vol. 230(C), pages 160-174.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Desmond Batsa Dorhjie & Elena Mukhina & Anton Kasyanenko & Alexey Cheremisin, 2023. "Tight and Shale Oil Exploration: A Review of the Global Experience and a Case of West Siberia," Energies, MDPI, vol. 16(18), pages 1-28, September.
    2. Chen, Binbin & Xuan, Jin & Offer, Gregory James & Wang, Huizhi, 2020. "Multiplex measurement of diffusion in zinc battery electrolytes from microfluidics using Raman microspectroscopy," Applied Energy, Elsevier, vol. 279(C).
    3. Song, Hongqing & Lao, Junming & Zhang, Liyuan & Xie, Chiyu & Wang, Yuhe, 2023. "Underground hydrogen storage in reservoirs: pore-scale mechanisms and optimization of storage capacity and efficiency," Applied Energy, Elsevier, vol. 337(C).
    4. Jin, Xu & Wang, Xiaoqi & Yan, Weipeng & Meng, Siwei & Liu, Xiaodan & Jiao, Hang & Su, Ling & Zhu, Rukai & Liu, He & Li, Jianming, 2019. "Exploration and casting of large scale microscopic pathways for shale using electrodeposition," Applied Energy, Elsevier, vol. 247(C), pages 32-39.
    5. Jian, Guoqing & Gizzatov, Ayrat & Kawelah, Mohammed & AlYousef, Zuhair & Abdel-Fattah, Amr I., 2021. "Simply built microfluidics for fast screening of CO2 foam surfactants and foam model parameters estimation," Applied Energy, Elsevier, vol. 292(C).
    6. Ganggang Hou & Xiaoli Ma & Wenyue Zhao & Pengxiang Diwu & Tongjing Liu & Jirui Hou, 2021. "Synergistic Modes and Enhanced Oil Recovery Mechanism of CO 2 Synergistic Huff and Puff," Energies, MDPI, vol. 14(12), pages 1-30, June.
    7. Huang, Xianfu & Zhao, Ya-Pu, 2023. "Evolution of pore structure and adsorption-desorption in oil shale formation rocks after compression," Energy, Elsevier, vol. 278(PA).
    8. Lei Li & Xue Zhang & Jiahui Liu & Qiuheng Xie & Xiaomei Zhou & Jianyang Zheng & Yuliang Su, 2022. "Research Progress and Prospect of Carbon Dioxide Utilization and Storage Based on Unconventional Oil and Gas Development," Energies, MDPI, vol. 15(24), pages 1-29, December.
    9. Wang, Chao & Liu, Bo & Mohammadi, Mohammad-Reza & Fu, Li & Fattahi, Elham & Motra, Hem Bahadur & Hazra, Bodhisatwa & Hemmati-Sarapardeh, Abdolhossein & Ostadhassan, Mehdi, 2024. "Integrating experimental study and intelligent modeling of pore evolution in the Bakken during simulated thermal progression for CO2 storage goals," Applied Energy, Elsevier, vol. 359(C).
    10. Guo, Yaohao & Liu, Fen & Qiu, Junjie & Xu, Zhi & Bao, Bo, 2022. "Microscopic transport and phase behaviors of CO2 injection in heterogeneous formations using microfluidics," Energy, Elsevier, vol. 256(C).
    11. Hao, Yongmao & Li, Zongfa & Su, Yuliang & Kong, Chuixian & Chen, Hong & Meng, Yang, 2022. "Experimental investigation of CO2 storage and oil production of different CO2 injection methods at pore-scale and core-scale," Energy, Elsevier, vol. 254(PB).
    12. Dmitrii Pereponov & Michael Tarkhov & Desmond Batsa Dorhjie & Alexander Rykov & Ivan Filippov & Elena Zenova & Vladislav Krutko & Alexey Cheremisin & Evgeny Shilov, 2023. "Microfluidic Studies on Minimum Miscibility Pressure for n-Decane and CO 2," Energies, MDPI, vol. 16(13), pages 1-21, June.
    13. Mohamed Mehana & Qinjun Kang & Hari Viswanathan, 2020. "Molecular-Scale Considerations of Enhanced Oil Recovery in Shale," Energies, MDPI, vol. 13(24), pages 1-13, December.
    14. Zhang, Xue & Su, Yuliang & Li, Lei & Da, Qi'an & Hao, Yongmao & Wang, Wendong & Liu, Jiahui & Gao, Xiaogang & Zhao, An & Wang, Kaiyu, 2022. "Microscopic remaining oil initiation mechanism and formation damage of CO2 injection after waterflooding in deep reservoirs," Energy, Elsevier, vol. 248(C).
    15. Li, Zongfa & Liu, Jiahui & Su, Yuliang & Fan, Liyao & Hao, Yongmao & kanjibayi, Bahedawulieti & Huang, Lijuan & Ren, Shaoran & Sun, Yongquan & Liu, Ran, 2023. "Influences of diffusion and advection on dynamic oil-CO2 mixing during CO2 EOR and storage process: Experimental study and numerical modeling at pore-scales," Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9513-:d:1004147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.