IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p4969-d1180073.html
   My bibliography  Save this article

Impact of Domain Nesting on High-Resolution Forecasts of Solar Conditions in Central and Eastern Europe

Author

Listed:
  • Michał Mierzwiak

    (Faculty of Civil Engineering and Geodesy, Military University of Technology, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland)

  • Krzysztof Kroszczyński

    (Faculty of Civil Engineering and Geodesy, Military University of Technology, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland)

Abstract

The article presents a study on the impact of the domain nesting method on the results of simulated solar conditions using the mesoscale Weather Research and Forecasting model. The analysis included 8 consecutive days (July 2022), which were characterized by cloudless conditions, as well as complex situations related to the passing of a cold front. The study covered a region located in Central and Eastern Europe—the southern area of eastern Germany. The results of the model simulations using the adopted domain configurations (with spatial resolutions of 9, 3, and 1 km; 3 and 1 km; and 5 and 1 km) were compared to data from ground measurements from Deutscher Wetterdienst (DWD) stations. The effect of the duration of the triggered prediction on the quality of the output data was also investigated, and for this purpose, short-term predictions covering 24 and 48 h, respectively, were selected. Research revealed the advantages of one combination of domains—3 and 1 km—over the others and showed that the results of simulations with different duration lengths were characterized by consistent results. Research supports the demand for high-quality forecasts of solar conditions, which are extremely important in the process of managing energy systems.

Suggested Citation

  • Michał Mierzwiak & Krzysztof Kroszczyński, 2023. "Impact of Domain Nesting on High-Resolution Forecasts of Solar Conditions in Central and Eastern Europe," Energies, MDPI, vol. 16(13), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4969-:d:1180073
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/4969/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/4969/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michał Mierzwiak & Krzysztof Kroszczyński & Andrzej Araszkiewicz, 2022. "On Solar Radiation Prediction for the East–Central European Region," Energies, MDPI, vol. 15(9), pages 1-20, April.
    2. Kosmopoulos, P.G. & Kazadzis, S. & Lagouvardos, K. & Kotroni, V. & Bais, A., 2015. "Solar energy prediction and verification using operational model forecasts and ground-based solar measurements," Energy, Elsevier, vol. 93(P2), pages 1918-1930.
    3. Radosław Wolniak & Bożena Skotnicka-Zasadzień, 2022. "Development of Photovoltaic Energy in EU Countries as an Alternative to Fossil Fuels," Energies, MDPI, vol. 15(2), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maren Helen Meyer & Sandra Dullau & Pascal Scholz & Markus Andreas Meyer & Sabine Tischew, 2023. "Bee-Friendly Native Seed Mixtures for the Greening of Solar Parks," Land, MDPI, vol. 12(6), pages 1-16, June.
    2. Olga Pisani & Henri Diémoz & Claudio Cassardo, 2023. "Characterisation and Field Test of a Simple AvaSpec Array Spectroradiometer for Solar Irradiance Measurements at an Alpine Site," Energies, MDPI, vol. 16(7), pages 1-26, March.
    3. Anna Rutkowska-Ziarko & Lesław Markowski, 2022. "Accounting and Market Risk Measures of Polish Energy Companies," Energies, MDPI, vol. 15(6), pages 1-21, March.
    4. Talaat, M. & Farahat, M.A. & Elkholy, M.H., 2019. "Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies," Energy, Elsevier, vol. 170(C), pages 668-682.
    5. Iwona Zdonek & Anna Mularczyk & Marian Turek & Stanisław Tokarski, 2023. "Perception of Prosumer Photovoltaic Technology in Poland: Usability, Ease of Use, Attitudes, and Purchase Intentions," Energies, MDPI, vol. 16(12), pages 1-18, June.
    6. Anna Mularczyk & Iwona Zdonek & Marian Turek & Stanisław Tokarski, 2022. "Intentions to Use Prosumer Photovoltaic Technology in Poland," Energies, MDPI, vol. 15(17), pages 1-15, August.
    7. Florian Gaman & Cristina Iacoboaea & Mihaela Aldea & Oana Luca & Adrian Andrei Stănescu & Carmen Mihaela Boteanu, 2022. "Energy Transition in Marginalized Urban Areas: The Case of Romania," Sustainability, MDPI, vol. 14(11), pages 1-22, June.
    8. Ehsan Noorollahi & Dawud Fadai & Mohsen Akbarpour Shirazi & Seyed Hassan Ghodsipour, 2016. "Land Suitability Analysis for Solar Farms Exploitation Using GIS and Fuzzy Analytic Hierarchy Process (FAHP)—A Case Study of Iran," Energies, MDPI, vol. 9(8), pages 1-24, August.
    9. Domenico Curto & Vincenzo Franzitta & Andrea Guercio & Rosario Miceli & Claudio Nevoloso & Francesco Maria Raimondi & Marco Trapanese, 2022. "An Experimental Comparison between an Ironless and a Traditional Permanent Magnet Linear Generator for Wave Energy Conversion," Energies, MDPI, vol. 15(7), pages 1-21, March.
    10. Beata Hysa & Anna Mularczyk, 2024. "PESTEL Analysis of the Photovoltaic Market in Poland—A Systematic Review of Opportunities and Threats," Resources, MDPI, vol. 13(10), pages 1-29, September.
    11. Henrik Zsiborács & András Vincze & István Háber & Gábor Pintér & Nóra Hegedűsné Baranyai, 2023. "Challenges of Establishing Solar Power Stations in Hungary," Energies, MDPI, vol. 16(1), pages 1-19, January.
    12. Sebastian Pater, 2023. "Increasing Energy Self-Consumption in Residential Photovoltaic Systems with Heat Pumps in Poland," Energies, MDPI, vol. 16(10), pages 1-14, May.
    13. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    14. Filip Czepło & Piotr F. Borowski, 2024. "Innovation Solution in Photovoltaic Sector," Energies, MDPI, vol. 17(1), pages 1-19, January.
    15. Michał Mierzwiak & Krzysztof Kroszczyński & Andrzej Araszkiewicz, 2023. "WRF Parameterizations of Short-Term Solar Radiation Forecasts for Cold Fronts in Central and Eastern Europe," Energies, MDPI, vol. 16(13), pages 1-20, July.
    16. Christiaan Oosthuizen & Barend Van Wyk & Yskandar Hamam & Dawood Desai & Yasser Alayli, 2020. "The Use of Gridded Model Output Statistics ( GMOS ) in Energy Forecasting of a Solar Car," Energies, MDPI, vol. 13(8), pages 1-16, April.
    17. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2017. "Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 616-637.
    18. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2016. "Recent improvements of the Meteorological Radiation Model for solar irradiance estimates under all-sky conditions," Renewable Energy, Elsevier, vol. 93(C), pages 142-158.
    19. Wassila Tercha & Sid Ahmed Tadjer & Fathia Chekired & Laurent Canale, 2024. "Machine Learning-Based Forecasting of Temperature and Solar Irradiance for Photovoltaic Systems," Energies, MDPI, vol. 17(5), pages 1-20, February.
    20. Ozden, Talat & Akinoglu, Bulent G. & Turan, Rasit, 2017. "Long term outdoor performances of three different on-grid PV arrays in central Anatolia – An extended analysis," Renewable Energy, Elsevier, vol. 101(C), pages 182-195.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4969-:d:1180073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.