IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p443-d1020611.html
   My bibliography  Save this article

Microscopic Analysis of Hydrogen Production from Methane Sono-Pyrolysis

Author

Listed:
  • Aissa Dehane

    (Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Constantine 3 Salah Boubnider, P.O. Box 72, Constantine 25000, Algeria)

  • Slimane Merouani

    (Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Constantine 3 Salah Boubnider, P.O. Box 72, Constantine 25000, Algeria)

Abstract

The sonolysis of certain substrates in water has proved its effectiveness for the enhancement of the sonochemical production of hydrogen. In this study, the sonolysis of methane has been investigated for the first time in a single acoustic bubble (microreactor) over a frequency from 140 to 515 kHz. The obtained findings have been compared to those available in the literature. Independently of the methane dose (inside the bubble), the yield of H 2 was improved especially with the decrease in wave frequency (from 515 to 140 kHz). For the driving frequencies 140, 213, 355, and 515 kHz, the production of hydrogen was maximized at 20, 15, 10, and 10% CH 4 , respectively. For 213 kHz, and the presence of 10% methane, the yield of hydrogen goes up by 111 fold compared to the case where the gas atmosphere is saturated only by argon. On the other hand, the highest methane conversions (~100% for 2, 5 and 7% CH 4 ) were retrieved at 140 and 213 kHz. In terms of hydrogen formation and methane decay, the use of 140 kHz was found to be the best choice, whereas for a multi-bubble system, the number of acoustic bubbles should be taken into account for an optimal choice of frequency. Interestingly, it was observed that at 140 and 213 kHz and for methane mole fractions lower than or equal to 30 and 10%, respectively, a maximal formation of H 2 and a relatively important production of • OH could result simultaneously.

Suggested Citation

  • Aissa Dehane & Slimane Merouani, 2022. "Microscopic Analysis of Hydrogen Production from Methane Sono-Pyrolysis," Energies, MDPI, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:443-:d:1020611
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/443/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/443/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kothari, Richa & Buddhi, D. & Sawhney, R.L., 2008. "Comparison of environmental and economic aspects of various hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 553-563, February.
    2. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Freida Ozavize Ayodele & Siti Indati Mustapa & Bamidele Victor Ayodele & Norsyahida Mohammad, 2020. "An Overview of Economic Analysis and Environmental Impacts of Natural Gas Conversion Technologies," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    2. Lee, Timothy & Fu, Jintao & Basile, Victoria & Corsi, John S. & Wang, Zeyu & Detsi, Eric, 2020. "Activated alumina as value-added byproduct from the hydrolysis of hierarchical nanoporous aluminum with pure water to generate hydrogen fuel," Renewable Energy, Elsevier, vol. 155(C), pages 189-196.
    3. Hajizadeh, Abdollah & Mohamadi-Baghmolaei, Mohamad & Cata Saady, Noori M. & Zendehboudi, Sohrab, 2022. "Hydrogen production from biomass through integration of anaerobic digestion and biogas dry reforming," Applied Energy, Elsevier, vol. 309(C).
    4. Alviani, Vani Novita & Hirano, Nobuo & Watanabe, Noriaki & Oba, Masahiro & Uno, Masaoki & Tsuchiya, Noriyoshi, 2021. "Local initiative hydrogen production by utilization of aluminum waste materials and natural acidic hot-spring water," Applied Energy, Elsevier, vol. 293(C).
    5. Shashi Sharma & Shivani Agarwal & Ankur Jain, 2021. "Significance of Hydrogen as Economic and Environmentally Friendly Fuel," Energies, MDPI, vol. 14(21), pages 1-28, November.
    6. Li, Feng & Chu, Mansheng & Tang, Jue & Liu, Zhenggen & Guo, Jun & Yan, Ruijun & Liu, Peijun, 2022. "Thermodynamic performance analysis and environmental impact assessment of an integrated system for hydrogen generation and steelmaking," Energy, Elsevier, vol. 241(C).
    7. Khademi, Mohammad Hasan & Alipour-Dehkordi, Afshar & Nalchifard, Fereshteh, 2023. "Sustainable hydrogen and syngas production from waste valorization of biodiesel synthesis by-product: Green chemistry approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    8. Li, Kaiyu & Gao, Yitong & Zhang, Shengan & Liu, Guilian, 2022. "Study on the energy efficiency of bioethanol-based liquid hydrogen production process," Energy, Elsevier, vol. 238(PC).
    9. Qyyum, Muhammad Abdul & Dickson, Rofice & Ali Shah, Syed Fahad & Niaz, Haider & Khan, Amin & Liu, J. Jay & Lee, Moonyong, 2021. "Availability, versatility, and viability of feedstocks for hydrogen production: Product space perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Al Ibtida Sultana & Nepu Saha & M. Toufiq Reza, 2021. "Synopsis of Factors Affecting Hydrogen Storage in Biomass-Derived Activated Carbons," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    11. Lozano-Martín, Daniel & Moreau, Alejandro & Chamorro, César R., 2022. "Thermophysical properties of hydrogen mixtures relevant for the development of the hydrogen economy: Review of available experimental data and thermodynamic models," Renewable Energy, Elsevier, vol. 198(C), pages 1398-1429.
    12. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    13. Kothari, Richa & Singh, D.P. & Tyagi, V.V. & Tyagi, S.K., 2012. "Fermentative hydrogen production – An alternative clean energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2337-2346.
    14. Tolga Balta, M. & Dincer, Ibrahim & Hepbasli, Arif, 2010. "Energy and exergy analyses of a new four-step copper–chlorine cycle for geothermal-based hydrogen production," Energy, Elsevier, vol. 35(8), pages 3263-3272.
    15. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    16. Balcombe, Paul & Speirs, Jamie & Johnson, Erin & Martin, Jeanne & Brandon, Nigel & Hawkes, Adam, 2018. "The carbon credentials of hydrogen gas networks and supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1077-1088.
    17. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    19. Qiang Yue & Xicui Chai & Yujie Zhang & Qi Wang & Heming Wang & Feng Zhao & Wei Ji & Yuqi Lu, 2023. "Analysis of iron and steel production paths on the energy demand and carbon emission in China’s iron and steel industry," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4065-4085, May.
    20. Samuel Simon Araya & Fan Zhou & Simon Lennart Sahlin & Sobi Thomas & Christian Jeppesen & Søren Knudsen Kær, 2019. "Fault Characterization of a Proton Exchange Membrane Fuel Cell Stack," Energies, MDPI, vol. 12(1), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:443-:d:1020611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.