IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p371-d1018373.html
   My bibliography  Save this article

The Impacts of Terrestrial Wind Turbine’s Operation on Telecommunication Services

Author

Listed:
  • Ukashatu Abubakar

    (Power Electronics & Renewable Research Laboratory (PEARL), Department of Electrical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Saad Mekhilef

    (Power Electronics & Renewable Research Laboratory (PEARL), Department of Electrical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
    School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
    Smart Grids Research Group, Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Department of Electrical Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia)

  • Hazlie Mokhlis

    (Power Electronics & Renewable Research Laboratory (PEARL), Department of Electrical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia)

  • Mehdi Seyedmahmoudian

    (School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia)

  • Alex Stojcevski

    (School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia)

  • Muhyaddin Rawa

    (Smart Grids Research Group, Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Department of Electrical and Computer Engineering, Faculty of Engineering, K. A. CARE Energy Research and Innovation Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

This paper presents a compendious review for the evaluation and description of the mathematical modelling of the affected components in wind turbines which cause the scattering of communication signals. The impact of an adjacent wind farm operation on telecommunication signals is that it induces electromagnetic interference (EMI) in radar, television and radio signals, resulting from the complex rotating blade’s geometry of the wind turbines. Thus, altering the quality of the reflected signal, especially the capability of the radar detection. In all the modelling studies, the radar cross section (RCS) model of a wind turbine’s blade is found to be the most complex, due to its huge computational burden. However, clutter filtering is another interesting technique, which employs the Doppler signal processing to obviate the huge computational task in RCS. In this case, the rotating blades of the wind turbine produce Doppler echoes, which in turn are used to estimate the model of the blade by modelling the echo of the scattering points. Therefore, this review succinctly compiles the basic steps of theoretical analysis and simulations of the impact of wind turbines on communication signals, and the remedies to minimize the impact.

Suggested Citation

  • Ukashatu Abubakar & Saad Mekhilef & Hazlie Mokhlis & Mehdi Seyedmahmoudian & Alex Stojcevski & Muhyaddin Rawa, 2022. "The Impacts of Terrestrial Wind Turbine’s Operation on Telecommunication Services," Energies, MDPI, vol. 16(1), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:371-:d:1018373
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/371/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/371/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hosseini, S.M Amin & Mohammadirad, Amir & Shayegani Akmal, Amir Abbas, 2022. "Surge analysis on wind farm considering lightning strike to multi-blade," Renewable Energy, Elsevier, vol. 186(C), pages 312-326.
    2. Piotr F. Borowski, 2021. "Digitization, Digital Twins, Blockchain, and Industry 4.0 as Elements of Management Process in Enterprises in the Energy Sector," Energies, MDPI, vol. 14(7), pages 1-20, March.
    3. Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
    4. Florian Krug & Bastian Lewke, 2009. "Electromagnetic Interference on Large Wind Turbines," Energies, MDPI, vol. 2(4), pages 1-12, November.
    5. Aydin, Nazli Yonca & Kentel, Elcin & Duzgun, Sebnem, 2010. "GIS-based environmental assessment of wind energy systems for spatial planning: A case study from Western Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 364-373, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnieszka Kuś & Dorota Grego-Planer, 2021. "A Model of Innovation Activity in Small Enterprises in the Context of Selected Financial Factors: The Example of the Renewable Energy Sector," Energies, MDPI, vol. 14(10), pages 1-17, May.
    2. Long Xue & Qianyu Zhang & Xuemang Zhang & Chengyu Li, 2022. "Can Digital Transformation Promote Green Technology Innovation?," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    3. Jun Liu & Yu Qian & Huihong Chang & Jeffrey Yi-Lin Forrest, 2022. "The Impact of Technology Innovation on Enterprise Capacity Utilization—Evidence from China’s Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    4. Kumarasamy Palanimuthu & Ganesh Mayilsamy & Ameerkhan Abdul Basheer & Seong-Ryong Lee & Dongran Song & Young Hoon Joo, 2022. "A Review of Recent Aerodynamic Power Extraction Challenges in Coordinated Pitch, Yaw, and Torque Control of Large-Scale Wind Turbine Systems," Energies, MDPI, vol. 15(21), pages 1-27, November.
    5. Ning, Jiajun & Xiong, Lixin, 2024. "Analysis of the dynamic evolution process of the digital transformation of renewable energy enterprises based on the cooperative and evolutionary game model," Energy, Elsevier, vol. 288(C).
    6. Hernández-Escobedo, Q. & Rodríguez-García, E. & Saldaña-Flores, R. & Fernández-García, A. & Manzano-Agugliaro, F., 2015. "Solar energy resource assessment in Mexican states along the Gulf of Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 216-238.
    7. Pei Zhang & Peiran Chen & Fan Xiao & Yong Sun & Shuyan Ma & Ziwei Zhao, 2022. "The Impact of Information Infrastructure on Air Pollution: Empirical Evidence from China," IJERPH, MDPI, vol. 19(21), pages 1-17, November.
    8. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    9. Assem Urekeshova & Zhibek Rakhmetulina & Igor Dubina & Sergey Evgenievich Barykin & Angela Bahauovna Mottaeva & Shakizada Uteulievna Niyazbekova, 2023. "The Impact of Digital Finance on Clean Energy and Green Bonds through the Dynamics of Spillover," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 441-452, March.
    10. Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
    11. Anna Borkovcová & Miloslava Černá & Marcela Sokolová, 2022. "Blockchain in the Energy Sector—Systematic Review," Sustainability, MDPI, vol. 14(22), pages 1-12, November.
    12. Frank Hanssen & Roel May & Jiska van Dijk & Jan Ketil Rød, 2018. "Spatial Multi-Criteria Decision Analysis Tool Suite for Consensus-Based Siting of Renewable Energy Structures," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-28, September.
    13. Krzysztof Bartczak & Stanisław Łobejko, 2022. "The Implementation Environment for a Digital Technology Platform of Renewable Energy Sources," Energies, MDPI, vol. 15(16), pages 1-16, August.
    14. Ali, Shahid & Taweekun, Juntakan & Techato, Kuaanan & Waewsak, Jompob & Gyawali, Saroj, 2019. "GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 1360-1372.
    15. Hedan Ma & Xinliang Jia & Xin Wang, 2022. "Digital Transformation, Ambidextrous Innovation and Enterprise Value: Empirical Analysis Based on Listed Chinese Manufacturing Companies," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    16. Baseer, M.A. & Rehman, S. & Meyer, J.P. & Alam, Md. Mahbub, 2017. "GIS-based site suitability analysis for wind farm development in Saudi Arabia," Energy, Elsevier, vol. 141(C), pages 1166-1176.
    17. Gorsevski, Pece V. & Cathcart, Steven C. & Mirzaei, Golrokh & Jamali, Mohsin M. & Ye, Xinyue & Gomezdelcampo, Enrique, 2013. "A group-based spatial decision support system for wind farm site selection in Northwest Ohio," Energy Policy, Elsevier, vol. 55(C), pages 374-385.
    18. Jakov Batelić & Karlo Griparić & Dario Matika, 2021. "Impact of Remediation-Based Maintenance on the Reliability of a Coal-Fired Power Plant Using Generalized Stochastic Petri Nets," Energies, MDPI, vol. 14(18), pages 1-14, September.
    19. Nguyen Thanh Viet & Alla G. Kravets, 2022. "The New Method for Analyzing Technology Trends of Smart Energy Asset Performance Management," Energies, MDPI, vol. 15(18), pages 1-26, September.
    20. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:371-:d:1018373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.