IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5682-d632389.html
   My bibliography  Save this article

Impact of Remediation-Based Maintenance on the Reliability of a Coal-Fired Power Plant Using Generalized Stochastic Petri Nets

Author

Listed:
  • Jakov Batelić

    (HEP Generation, Plomin Luka 50, 52234 Zagreb, Croatia)

  • Karlo Griparić

    (Department of Engineering, Juraj Dobrila University of Pula, Zagrebacka 30, 52000 Pula, Croatia)

  • Dario Matika

    (Mechanical Engineering, Zagreb University of Applied Sciences, Vrbik 8, 10000 Zagreb, Croatia)

Abstract

Rapid changes in electricity power markets have increased the production costs of coal-fired power plants and pushed their production to the limits of profitability. For power plants currently in operation, a possible approach to cope with this issue is to introduce novel methods that increase the plant’s reliability and availability. Coal mills are a subsystem that should ensure a plant’s availability without unexpected breakdowns. Remediation-based maintenance is defined as a set of actions performed after fault detection that do not require instant shutdown due to safety reasons. The aim of this paper was to provide a scientific confirmation that by implementing a novel remediation-based maintenance strategy, electricity production breakdowns can be significantly reduced. First, the performance of the proposed maintenance method was proved in simulation where coal mills were modeled by generalized stochastic Petri nets. The maintenance strategy was then experimentally verified in a 220 MW coal-fired power plant located in Croatia, where the plant’s availability, reliability and efficiency were increased.

Suggested Citation

  • Jakov Batelić & Karlo Griparić & Dario Matika, 2021. "Impact of Remediation-Based Maintenance on the Reliability of a Coal-Fired Power Plant Using Generalized Stochastic Petri Nets," Energies, MDPI, vol. 14(18), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5682-:d:632389
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5682/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5682/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. BULUT, Merve & ÖZCAN, Evrencan, 2021. "A new approach to determine maintenance periods of the most critical hydroelectric power plant equipment," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    2. Muchiri, Peter & Pintelon, Liliane & Gelders, Ludo & Martin, Harry, 2011. "Development of maintenance function performance measurement framework and indicators," International Journal of Production Economics, Elsevier, vol. 131(1), pages 295-302, May.
    3. Arthur H.A. Melani & Carlos A. Murad & Adherbal Caminada Netto & Gilberto F.M. Souza & Silvio I. Nabeta, 2019. "Maintenance Strategy Optimization of a Coal-Fired Power Plant Cooling Tower through Generalized Stochastic Petri Nets," Energies, MDPI, vol. 12(10), pages 1-28, May.
    4. Piotr F. Borowski, 2021. "Digitization, Digital Twins, Blockchain, and Industry 4.0 as Elements of Management Process in Enterprises in the Energy Sector," Energies, MDPI, vol. 14(7), pages 1-20, March.
    5. Piotr F. Borowski, 2021. "Significance and Directions of Energy Development in African Countries," Energies, MDPI, vol. 14(15), pages 1-19, July.
    6. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    7. Jagtap, Hanumant P. & Bewoor, Anand K. & Kumar, Ravinder & Ahmadi, Mohammad Hossein & Chen, Lingen, 2020. "Performance analysis and availability optimization to improve maintenance schedule for the turbo-generator subsystem of a thermal power plant using particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    8. Melani, Arthur Henrique Andrade & Murad, Carlos Alberto & Caminada Netto, Adherbal & Souza, Gilberto Francisco Martha de & Nabeta, Silvio Ikuyo, 2018. "Criticality-based maintenance of a coal-fired power plant," Energy, Elsevier, vol. 147(C), pages 767-781.
    9. Yong Hu & Boyu Ping & Deliang Zeng & Yuguang Niu & Yaokui Gao, 2020. "Modeling of Coal Mill System Used for Fault Simulation," Energies, MDPI, vol. 13(7), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fausto Pedro García Márquez, 2022. "Advanced Analytics in Renewable Energy," Energies, MDPI, vol. 15(10), pages 1-5, May.
    2. Arthur Henrique de Andrade Melani & Miguel Angelo de Carvalho Michalski & Carlos Alberto Murad & Adherbal Caminada Netto & Gilberto Francisco Martha de Souza, 2022. "Generalized Stochastic Petri Nets for Planning and Optimizing Maintenance Logistics of Small Hydroelectric Power Plants," Energies, MDPI, vol. 15(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Rokhforoz, Pegah & Montazeri, Mina & Fink, Olga, 2023. "Safe multi-agent deep reinforcement learning for joint bidding and maintenance scheduling of generation units," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Rokhforoz, Pegah & Gjorgiev, Blazhe & Sansavini, Giovanni & Fink, Olga, 2021. "Multi-agent maintenance scheduling based on the coordination between central operator and decentralized producers in an electricity market," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    4. Patrick Zschech & Kai Heinrich & Raphael Bink & Janis S. Neufeld, 2019. "Prognostic Model Development with Missing Labels," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 327-343, June.
    5. Agnieszka Kuś & Dorota Grego-Planer, 2021. "A Model of Innovation Activity in Small Enterprises in the Context of Selected Financial Factors: The Example of the Renewable Energy Sector," Energies, MDPI, vol. 14(10), pages 1-17, May.
    6. António Abreu & Rúben Piedade, 2018. "Decision Support Model in the Strategic Management of the Portuguese Air Force Alpha Jet Fleet," Asian Journal of Social Sciences and Management Studies, Asian Online Journal Publishing Group, vol. 5(3), pages 72-81.
    7. Long Xue & Qianyu Zhang & Xuemang Zhang & Chengyu Li, 2022. "Can Digital Transformation Promote Green Technology Innovation?," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    8. Lucija Jukić & Domagoj Vulin & Valentina Kružić & Maja Arnaut, 2021. "Carbon-Negative Scenarios in High CO 2 Gas Condensate Reservoirs," Energies, MDPI, vol. 14(18), pages 1-11, September.
    9. Jun Liu & Yu Qian & Huihong Chang & Jeffrey Yi-Lin Forrest, 2022. "The Impact of Technology Innovation on Enterprise Capacity Utilization—Evidence from China’s Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    10. Nitin Panwar & Sanjeev Kumar, 2022. "Mathematical modelling and performance analysis of screening unit in paper plant," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2751-2763, October.
    11. Ning, Jiajun & Xiong, Lixin, 2024. "Analysis of the dynamic evolution process of the digital transformation of renewable energy enterprises based on the cooperative and evolutionary game model," Energy, Elsevier, vol. 288(C).
    12. Emil Cazacu & Lucian-Gabriel Petrescu & Valentin Ioniță, 2022. "Smart Predictive Maintenance Device for Critical In-Service Motors," Energies, MDPI, vol. 15(12), pages 1-16, June.
    13. Pei Zhang & Peiran Chen & Fan Xiao & Yong Sun & Shuyan Ma & Ziwei Zhao, 2022. "The Impact of Information Infrastructure on Air Pollution: Empirical Evidence from China," IJERPH, MDPI, vol. 19(21), pages 1-17, November.
    14. Assem Urekeshova & Zhibek Rakhmetulina & Igor Dubina & Sergey Evgenievich Barykin & Angela Bahauovna Mottaeva & Shakizada Uteulievna Niyazbekova, 2023. "The Impact of Digital Finance on Clean Energy and Green Bonds through the Dynamics of Spillover," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 441-452, March.
    15. Anna Borkovcová & Miloslava Černá & Marcela Sokolová, 2022. "Blockchain in the Energy Sector—Systematic Review," Sustainability, MDPI, vol. 14(22), pages 1-12, November.
    16. Tae-Woo Kim & Yenjae Chang & Dae-Wook Kim & Man-Keun Kim, 2020. "Preventive Maintenance and Forced Outages in Power Plants in Korea," Energies, MDPI, vol. 13(14), pages 1-12, July.
    17. Johannes Freiesleben & Nicolas Gu'erin, 2015. "Homogenization and Clustering as a Non-Statistical Methodology to Assess Multi-Parametrical Chain Problems," Papers 1505.03874, arXiv.org, revised Dec 2017.
    18. Krzysztof Bartczak & Stanisław Łobejko, 2022. "The Implementation Environment for a Digital Technology Platform of Renewable Energy Sources," Energies, MDPI, vol. 15(16), pages 1-16, August.
    19. Hedan Ma & Xinliang Jia & Xin Wang, 2022. "Digital Transformation, Ambidextrous Innovation and Enterprise Value: Empirical Analysis Based on Listed Chinese Manufacturing Companies," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    20. Dibaj, Ali & Gao, Zhen & Nejad, Amir R., 2023. "Fault detection of offshore wind turbine drivetrains in different environmental conditions through optimal selection of vibration measurements," Renewable Energy, Elsevier, vol. 203(C), pages 161-176.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5682-:d:632389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.