IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p304-d1016906.html
   My bibliography  Save this article

Gas Turbine Model Identification Based on Online Sequential Regularization Extreme Learning Machine with a Forgetting Factor

Author

Listed:
  • Rui Yang

    (College of Power Engineering, Naval University of Engineering, Wuhan 430033, China)

  • Yongbao Liu

    (College of Power Engineering, Naval University of Engineering, Wuhan 430033, China)

  • Xing He

    (College of Power Engineering, Naval University of Engineering, Wuhan 430033, China)

  • Zhimeng Liu

    (College of Power Engineering, Naval University of Engineering, Wuhan 430033, China)

Abstract

Due to the advantages of high convergence accuracy, fast training speed, and good generalization performance, the extreme learning machine is widely used in model identification. However, a gas turbine is a complex nonlinear system, and its sampling data are often time-sensitive and have measurement noise. This article proposes an online sequential regularization extreme learning machine algorithm based on the forgetting factor (FOS_RELM) to improve gas turbine identification performance. The proposed FOS_RELM not only retains the advantages of the extreme learning machine algorithm but also enhances the learning effect by rapidly discarding obsolete data during the learning process and improves the anti-interference performance by using the regularization principle. A detailed performance comparison of the FOS_RELM with the extreme learning machine algorithm and regularized extreme learning machine algorithm is carried out in the model identification of a gas turbine. The results show that the FOS_RELM has higher accuracy and better robustness than the extreme learning machine algorithm and regularized extreme learning machine algorithm. All in all, the proposed algorithm provides a candidate technique for modeling actual gas turbine units.

Suggested Citation

  • Rui Yang & Yongbao Liu & Xing He & Zhimeng Liu, 2022. "Gas Turbine Model Identification Based on Online Sequential Regularization Extreme Learning Machine with a Forgetting Factor," Energies, MDPI, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:304-:d:1016906
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/304/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/304/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Omar Mohamed & Ashraf Khalil, 2020. "Progress in Modeling and Control of Gas Turbine Power Generation Systems: A Survey," Energies, MDPI, vol. 13(9), pages 1-26, May.
    2. Zhao, Yong-Ping & Hu, Qian-Kun & Xu, Jian-Guo & Li, Bing & Huang, Gong & Pan, Ying-Ting, 2018. "A robust extreme learning machine for modeling a small-scale turbojet engine," Applied Energy, Elsevier, vol. 218(C), pages 22-35.
    3. Tan, Dongli & Wu, Yao & Lv, Junshuai & Li, Jian & Ou, Xiaoyu & Meng, Yujun & Lan, Guanglin & Chen, Yanhui & Zhang, Zhiqing, 2023. "Performance optimization of a diesel engine fueled with hydrogen/biodiesel with water addition based on the response surface methodology," Energy, Elsevier, vol. 263(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhirup Khanna & Bhawna Yadav Lamba & Sapna Jain & Vadim Bolshev & Dmitry Budnikov & Vladimir Panchenko & Alexandr Smirnov, 2023. "Biodiesel Production from Jatropha: A Computational Approach by Means of Artificial Intelligence and Genetic Algorithm," Sustainability, MDPI, vol. 15(12), pages 1-33, June.
    2. Jie Hu & Wentong Cao & Feng Jiang & Lingling Hu & Qian Chen & Weiguang Zheng & Junming Zhou, 2023. "Study on Multi-Objective Optimization of Power System Parameters of Battery Electric Vehicles," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    3. Biao Li & Pengfei Wang & Peng Sun & Rui Meng & Jun Zeng & Guanghui Liu, 2023. "A Model for Determining the Optimal Decommissioning Interval of Energy Equipment Based on the Whole Life Cycle Cost," Sustainability, MDPI, vol. 15(6), pages 1-28, March.
    4. Monika Andrych-Zalewska & Zdzislaw Chlopek & Jacek Pielecha & Jerzy Merkisz, 2023. "Influence of the In-Cylinder Catalyst on the Aftertreatment Efficiency of a Diesel Engine," Energies, MDPI, vol. 16(6), pages 1-21, March.
    5. Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
    6. Tan, Dongli & Meng, Yujun & Tian, Jie & Zhang, Chengtao & Zhang, Zhiqing & Yang, Guanhua & Cui, Shuwan & Hu, Jingyi & Zhao, Ziheng, 2023. "Utilization of renewable and sustainable diesel/methanol/n-butanol (DMB) blends for reducing the engine emissions in a diesel engine with different pre-injection strategies," Energy, Elsevier, vol. 269(C).
    7. Liu, Hui & Duan, Zhu & Li, Yanfei & Lu, Haibo, 2018. "A novel ensemble model of different mother wavelets for wind speed multi-step forecasting," Applied Energy, Elsevier, vol. 228(C), pages 1783-1800.
    8. Mohammad Alsarayreh & Omar Mohamed & Mustafa Matar, 2022. "Modeling a Practical Dual-Fuel Gas Turbine Power Generation System Using Dynamic Neural Network and Deep Learning," Sustainability, MDPI, vol. 14(2), pages 1-25, January.
    9. Zhang, Zhiqing & Zhong, Weihuang & Mao, Chengfang & Xu, Yuejiang & Lu, Kai & Ye, Yanshuai & Guan, Wei & Pan, Mingzhang & Tan, Dongli, 2024. "Multi-objective optimization of Fe-based SCR catalyst on the NOx conversion efficiency for a diesel engine based on FGRA-ANN/RF," Energy, Elsevier, vol. 294(C).
    10. Zhang, Zhiqing & Liu, Hui & Yang, Dayong & Li, Junming & Lu, Kai & Ye, Yanshuai & Tan, Dongli, 2024. "Performance enhancements of power density and exergy efficiency for high-temperature proton exchange membrane fuel cell based on RSM-NSGA III," Energy, Elsevier, vol. 301(C).
    11. Feng, Hailong & Liu, Bei & Xu, Maojun & Li, Ming & Song, Zhiping, 2024. "Model-based deduction learning control: A novel method for optimizing gas turbine engine afterburner transient," Energy, Elsevier, vol. 292(C).
    12. Jia, Guohai & Gao, Sheng & Shu, Xiong & Ren, Bing & Zhang, Bin & Ma, Guangyu & Zhang, Jian & Liu, Hui & Li, Dongmei, 2024. "Multi-objective optimization of emission parameters of a diesel engine using oxygenated fuel and pilot injection strategy based on RSM-NSGA III," Energy, Elsevier, vol. 293(C).
    13. Andrés Meana-Fernández & Juan M. González-Caballín & Roberto Martínez-Pérez & Francisco J. Rubio-Serrano & Antonio J. Gutiérrez-Trashorras, 2022. "Power Plant Cycles: Evolution towards More Sustainable and Environmentally Friendly Technologies," Energies, MDPI, vol. 15(23), pages 1-27, November.
    14. Jiandong Duan & Fan Liu & Yao Yang & Zhuanting Jin, 2021. "Flexible Dispatch for Integrated Power and Gas Systems Considering Power-to-Gas and Demand Response," Energies, MDPI, vol. 14(17), pages 1-26, September.
    15. Zhang, Zhiqing & Hu, Jingyi & Yang, Dayong & Yin, Zibin & Lu, Kai & Tan, Dongli, 2024. "A comprehensive assessment over the environmental impact and combustion efficiency of using ammonia/ hydrogen/diesel blends in a diesel engine," Energy, Elsevier, vol. 303(C).
    16. Tang, Ruoli & Lin, Qiao & Zhou, Jinxiang & Zhang, Shangyu & Lai, Jingang & Li, Xin & Dong, Zhengcheng, 2020. "Suppression strategy of short-term and long-term environmental disturbances for maritime photovoltaic system," Applied Energy, Elsevier, vol. 259(C).
    17. Chen, Yanhui & Zhang, Jian & Zhang, Zhiqing & Zhang, Bin & Hu, Jingyi & Zhong, Weihuang & Ye, Yanshuai, 2024. "Effect of ammonia energy ratio and load on combustion and emissions of an ammonia/diesel dual-fuel engine," Energy, Elsevier, vol. 302(C).
    18. Tang, Shihao & Wei, Jia & Xie, Bo & Shi, Zhiwei & Wang, Hao & Tian, Xinghua & He, Biao & Peng, Qingguo, 2023. "Experimental and numerical investigation on H2-fueled thermophotovoltaic micro tube with multi-cavity," Energy, Elsevier, vol. 274(C).
    19. Zhao, Hang & Liao, Zengbu & Liu, Jinxin & Li, Ming & Liu, Wei & Wang, Lei & Song, Zhiping, 2022. "A highly robust thrust estimation method with dissimilar redundancy framework for gas turbine engine," Energy, Elsevier, vol. 245(C).
    20. Zhuang Kang & Zhiwei Shi & Jiahao Ye & Xinghua Tian & Zhixin Huang & Hao Wang & Depeng Wei & Qingguo Peng & Yaojie Tu, 2023. "A Review of Micro Power System and Micro Combustion: Present Situation, Techniques and Prospects," Energies, MDPI, vol. 16(7), pages 1-28, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:304-:d:1016906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.