IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3185-d803219.html
   My bibliography  Save this article

Study on the Mineralogical and Geochemical Characteristics of Arsenic in Permian Coals: Focusing on the Coalfields of Shanxi Formation in Northern China

Author

Listed:
  • Liqun Zhang

    (School of Resources and Environmental Engineering, Anhui University, Hefei 230093, China
    Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei 230601, China)

  • Liugen Zheng

    (School of Resources and Environmental Engineering, Anhui University, Hefei 230093, China
    Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei 230601, China)

  • Meng Liu

    (School of Resources and Environmental Engineering, Anhui University, Hefei 230093, China)

Abstract

The Huainan Coalfield is a typical multi-coal seam coalfield. In order to systematically investigate the distribution, occurrence, and integration of arsenic (As) in Shanxi coal, 26 coal samples and three rock samples were collected in the No. 1 coal seam of Huainan coalfield. The minerals, major element oxides, and As were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), polarized light microscopy, X-ray fluorescence spectroscopy (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS). The results indicated that the coals of Shanxi Formation were characterized by very low ash yields and low total sulfur contents. The identified minerals by XRD in the studied coals are dominated by kaolinite, quartz, calcite, and a lesser amount of pyrite. The As content ranges from 10.33 mg/kg to 95.03 mg/kg, with an average of 44.74 mg/kg. Compared with world coals, the studied coals have higher contents of As, which are characterized by enrichment. Based on statistical analyses, As shows an affinity to ash yield and possible association with silicate minerals. The contents of As in all occurrence fractions were ranked from high to low as follows: residual > Fe-Mn oxides > organic > exchangeable > carbonate. Using B, w (Sr)/ w (Ba) and w (B)/ w (Ga) geochemical parameter results to invert the depositional environment of the Huainan Shanxi Formation, a suitable coal-forming environment can cause relatively enriched As in coal.

Suggested Citation

  • Liqun Zhang & Liugen Zheng & Meng Liu, 2022. "Study on the Mineralogical and Geochemical Characteristics of Arsenic in Permian Coals: Focusing on the Coalfields of Shanxi Formation in Northern China," Energies, MDPI, vol. 15(9), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3185-:d:803219
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3185/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3185/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oboirien, B.O. & Thulari, V. & North, B.C., 2016. "Enrichment of trace elements in bottom ash from coal oxy-combustion: Effect of coal types," Applied Energy, Elsevier, vol. 177(C), pages 81-86.
    2. Sun, Ruoyu & Liu, Guijian & Zheng, Liugen & Chou, Chen-Lin, 2010. "Characteristics of coal quality and their relationship with coal-forming environment: A case study from the Zhuji exploration area, Huainan coalfield, Anhui, China," Energy, Elsevier, vol. 35(1), pages 423-435.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weicheng Wang & Liugen Zheng & Zhiwei Wu & Qian Zhang & Xing Chen & Yongchun Chen & Liqun Zhang, 2023. "Geochemical Characteristics of Rare-Metal, Rare-Dispersed, and Rare-Earth Elements and Depositional Environments in the Shanxi Formation Coal, Huainan Coalfield, Anhui, China," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
    2. Jing Li & Yidong Cai & Lei Zhao, 2022. "Advances in Exploration, Development and Utilization of Coal and Coal-Related Resources: An Overview," Energies, MDPI, vol. 15(24), pages 1-3, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chang'an & Wu, Song & Lv, Qiang & Liu, Xuan & Chen, Wufeng & Che, Defu, 2017. "Study on correlations of coal chemical properties based on database of real-time data," Applied Energy, Elsevier, vol. 204(C), pages 1115-1123.
    2. Lupiáñez, Carlos & Carmen Mayoral, M. & Díez, Luis I. & Pueyo, Eloy & Espatolero, Sergio & Manuel Andrés, J., 2016. "The role of limestone during fluidized bed oxy-combustion of coal and biomass," Applied Energy, Elsevier, vol. 184(C), pages 670-680.
    3. Lv, Chengwei & Xu, Jiuping & Xie, Heping & Zeng, Ziqiang & Wu, Yimin, 2016. "Equilibrium strategy based coal blending method for combined carbon and PM10 emissions reductions," Applied Energy, Elsevier, vol. 183(C), pages 1035-1052.
    4. Xia, Linlin & Wang, Ruwei & Huang, Qing & Cai, Jiawei & Wong, Ming Hung, 2024. "Stratigraphic distributions of biomarkers and carbon isotopes in coals constrain the Permo-Carboniferous climatic changes and floral turnovers in the north China block," Energy, Elsevier, vol. 289(C).
    5. Sun, Jian & Fu, Lin & Sun, Fangtian & Zhang, Shigang, 2014. "Study on a heat recovery system for the thermal power plant utilizing air cooling island," Energy, Elsevier, vol. 74(C), pages 836-844.
    6. Yang, Yuxuan & Zhong, Zhaoping & Li, Jiefei & Du, Haoran & Li, Qian & Zheng, Xiang & Qi, Renzhi & Zhang, Shan & Ren, Pengkun & Li, Zhaoying, 2023. "Experimental and theoretical-based study of heavy metal capture by modified silica-alumina-based materials during thermal conversion of coal at high temperature combustion," Applied Energy, Elsevier, vol. 351(C).
    7. Yin, Junjie & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Yan, Junjie, 2021. "Dynamic performance and control strategy modification for coal-fired power unit under coal quality variation," Energy, Elsevier, vol. 223(C).
    8. Xu, Jun & Tang, Hao & Su, Sheng & Liu, Jiawei & Xu, Kai & Qian, Kun & Wang, Yi & Zhou, Yingbiao & Hu, Song & Zhang, Anchao & Xiang, Jun, 2018. "A study of the relationships between coal structures and combustion characteristics: The insights from micro-Raman spectroscopy based on 32 kinds of Chinese coals," Applied Energy, Elsevier, vol. 212(C), pages 46-56.
    9. Weicheng Wang & Liugen Zheng & Zhiwei Wu & Qian Zhang & Xing Chen & Yongchun Chen & Liqun Zhang, 2023. "Geochemical Characteristics of Rare-Metal, Rare-Dispersed, and Rare-Earth Elements and Depositional Environments in the Shanxi Formation Coal, Huainan Coalfield, Anhui, China," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
    10. Cabral, Renato P. & Mac Dowell, Niall, 2017. "A novel methodological approach for achieving £/MWh cost reduction of CO2 capture and storage (CCS) processes," Applied Energy, Elsevier, vol. 205(C), pages 529-539.
    11. Oboirien, B.O. & Thulari, V. & North, B.C., 2016. "Enrichment of trace elements in bottom ash from coal oxy-combustion: Effect of coal types," Applied Energy, Elsevier, vol. 177(C), pages 81-86.
    12. Lucie Bartoňová & Helena Raclavská & Bohumír Čech & Marek Kucbel, 2019. "Behavior of Pb During Coal Combustion: An Overview," Sustainability, MDPI, vol. 11(21), pages 1-13, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3185-:d:803219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.