IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i3p1887-d1041570.html
   My bibliography  Save this article

Geochemical Characteristics of Rare-Metal, Rare-Dispersed, and Rare-Earth Elements and Depositional Environments in the Shanxi Formation Coal, Huainan Coalfield, Anhui, China

Author

Listed:
  • Weicheng Wang

    (School of Resource and Environment Engineering, Anhui University, Hefei 230601, China)

  • Liugen Zheng

    (School of Resource and Environment Engineering, Anhui University, Hefei 230601, China)

  • Zhiwei Wu

    (School of Resource and Environment Engineering, Anhui University, Hefei 230601, China)

  • Qian Zhang

    (School of Resource and Environment Engineering, Anhui University, Hefei 230601, China)

  • Xing Chen

    (School of Resource and Environment Engineering, Anhui University, Hefei 230601, China)

  • Yongchun Chen

    (National Engineering Laboratory of the Coal Mine Ecological Environment Protection, Huainan 232001, China)

  • Liqun Zhang

    (School of Resource and Environment Engineering, Anhui University, Hefei 230601, China)

Abstract

Coal, being one of the major energy sources for power generation, contains several critical trace elements. There is a growing scarcity and expense of these critical elements as a result of the increased demand and limitation of mining sources. To explore the geochemical characteristics of the rare-metal, rare-dispersed (scattered), and rare-earth elements (TREs) in coal, 25 coal seam samples of the Shanxi Formation in the Huainan coalfield were collected. The major element oxides, minerals, and TREs were analyzed by X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), and inductively coupled plasma-mass spectrometry (ICP-MS). The results revealed that the coal of the Shanxi Formation had ultra-low moisture and low ash yield and was medium–high-volatility with low sulfur content and high calorific value. Concerning minerals, the coal was mainly composed of kaolinite, illite, quartz, calcite, dolomite, and pyrite. Compared with Chinese coal and world hard coal, rare-metal element Li and rare-dispersed element Se were enriched, whereas Ga and Ta were only slightly enriched. The average content of REYs was 51.34 μg/g, which is lower than the average content of REYs in Chinese coal. It has the enrichment characteristics of light REYs. In the vertical direction, the content of most TREs was higher in the roof and floor of the coal seam and the parting, indicating that the sedimentary microenvironment plays an important role in controlling the migration and enrichment of elements. The experimental results of sequential chemical extraction and correlation analysis showed that the TREs in the Shanxi Formation coal mainly exist in a residual and carbonate bound state, and occur in clay minerals and carbonate minerals. The enrichment of Se may be due to its high organic form ratio. The C-value, B content, w (Sr)/ w (Ba), and REY geochemical parameters indicated that the Shanxi Formation Coal seam was developed in a transitional, semi-saline, deltaic sedimentary environment. With their development affected by seawater, REYs in coal are greatly supplied by terrigenous clastics. The complex sedimentary environment is an important reason for the varying occurrence states of TREs in the Shanxi Formation coals.

Suggested Citation

  • Weicheng Wang & Liugen Zheng & Zhiwei Wu & Qian Zhang & Xing Chen & Yongchun Chen & Liqun Zhang, 2023. "Geochemical Characteristics of Rare-Metal, Rare-Dispersed, and Rare-Earth Elements and Depositional Environments in the Shanxi Formation Coal, Huainan Coalfield, Anhui, China," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:1887-:d:1041570
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/3/1887/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/3/1887/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Ruoyu & Liu, Guijian & Zheng, Liugen & Chou, Chen-Lin, 2010. "Characteristics of coal quality and their relationship with coal-forming environment: A case study from the Zhuji exploration area, Huainan coalfield, Anhui, China," Energy, Elsevier, vol. 35(1), pages 423-435.
    2. Liqun Zhang & Liugen Zheng & Meng Liu, 2022. "Study on the Mineralogical and Geochemical Characteristics of Arsenic in Permian Coals: Focusing on the Coalfields of Shanxi Formation in Northern China," Energies, MDPI, vol. 15(9), pages 1-15, April.
    3. Yunhu Hu & Mu You & Guijian Liu & Zhongbing Dong & Facun Jiao & Ying Meng, 2021. "The Potential Utilizing of Critical Element from Coal and Combustion Residues," Energies, MDPI, vol. 14(15), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Li & Yidong Cai & Lei Zhao, 2022. "Advances in Exploration, Development and Utilization of Coal and Coal-Related Resources: An Overview," Energies, MDPI, vol. 15(24), pages 1-3, December.
    2. Lv, Chengwei & Xu, Jiuping & Xie, Heping & Zeng, Ziqiang & Wu, Yimin, 2016. "Equilibrium strategy based coal blending method for combined carbon and PM10 emissions reductions," Applied Energy, Elsevier, vol. 183(C), pages 1035-1052.
    3. Xia, Linlin & Wang, Ruwei & Huang, Qing & Cai, Jiawei & Wong, Ming Hung, 2024. "Stratigraphic distributions of biomarkers and carbon isotopes in coals constrain the Permo-Carboniferous climatic changes and floral turnovers in the north China block," Energy, Elsevier, vol. 289(C).
    4. Sun, Jian & Fu, Lin & Sun, Fangtian & Zhang, Shigang, 2014. "Study on a heat recovery system for the thermal power plant utilizing air cooling island," Energy, Elsevier, vol. 74(C), pages 836-844.
    5. Liqun Zhang & Liugen Zheng & Meng Liu, 2022. "Study on the Mineralogical and Geochemical Characteristics of Arsenic in Permian Coals: Focusing on the Coalfields of Shanxi Formation in Northern China," Energies, MDPI, vol. 15(9), pages 1-15, April.
    6. Yin, Junjie & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Yan, Junjie, 2021. "Dynamic performance and control strategy modification for coal-fired power unit under coal quality variation," Energy, Elsevier, vol. 223(C).
    7. Oboirien, B.O. & Thulari, V. & North, B.C., 2016. "Enrichment of trace elements in bottom ash from coal oxy-combustion: Effect of coal types," Applied Energy, Elsevier, vol. 177(C), pages 81-86.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:1887-:d:1041570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.