IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3174-d802899.html
   My bibliography  Save this article

Design Optimization of a Direct-Drive Electrically Excited Synchronous Generator for Tidal Wave Energy

Author

Listed:
  • Serigne Ousmane Samb

    (Institut de Recherche en Énergie Électrique de Nantes Atlantique (IREENA), Nantes Université, UR 4642, F-44600 Saint-Nazaire, France)

  • Nicolas Bernard

    (Institut de Recherche en Énergie Électrique de Nantes Atlantique (IREENA), Nantes Université, UR 4642, F-44600 Saint-Nazaire, France)

  • Mohamed Fouad Benkhoris

    (Institut de Recherche en Énergie Électrique de Nantes Atlantique (IREENA), Nantes Université, UR 4642, F-44600 Saint-Nazaire, France)

  • Huu Kien Bui

    (Institut de Recherche en Énergie Électrique de Nantes Atlantique (IREENA), Nantes Université, UR 4642, F-44600 Saint-Nazaire, France)

Abstract

In the field of marine renewable energies, the extraction of marine currents by the use of tidal current turbines has led to many studies. In contrast to offshore wind turbines, the mass minimization is not necessarily the most important criterion. In that case, Direct-Drive Electrically Excited Synchronous Generators (EESG) can be an interesting solution in a context where the permanent magnet market is more and more stressed. In the particular case of a tidal turbine, the electric generator operates at variable torque and speed all the time. Its sizing must therefore take into account the control strategy and check that all the constraints are respected during the working cycle, particularly the thermal one because its permanent regime is never reached. There is no solution today that can completely solve such a sizing problem. The paper presents a specific solution. In particular, we will see that the method presented allows an avoidance of an oversizing of the generator compared to conventional methods while finding the optimal control strategy. Thus, the design optimization of an EESG is conducted considering the variable torque and speed profiles related to marine currents. The analytical model used in the paper is presented at first. In a second step, the innovative and original method that allows solving at the same time the design optimization and the control strategy (dq stator currents and rotor current) are presented. It shows how it is possible to minimize both the lost energy during the working cycle and the mass while fulfilling all the constraints (especially the thermal constraint with its transient temperature response) and keeping a reduced computation time. The case of a 2 MW tidal wave turbine is chosen to illustrate this study. Finally, the optimal design selected is validated by a 2D magnetic Finite Element Analysis (FEA).

Suggested Citation

  • Serigne Ousmane Samb & Nicolas Bernard & Mohamed Fouad Benkhoris & Huu Kien Bui, 2022. "Design Optimization of a Direct-Drive Electrically Excited Synchronous Generator for Tidal Wave Energy," Energies, MDPI, vol. 15(9), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3174-:d:802899
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3174/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3174/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Linh Dang & Serigne Ousmane Samb & Ryad Sadou & Nicolas Bernard, 2021. "Co-Design Optimization of Direct Drive PMSGs for Offshore Wind Turbines Based on Wind Speed Profile," Energies, MDPI, vol. 14(15), pages 1-17, July.
    2. Navid Majdi Nasab & Jeff Kilby & Leila Bakhtiaryfard, 2020. "The Potential for Integration of Wind and Tidal Power in New Zealand," Sustainability, MDPI, vol. 12(5), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolas Bernard & Linh Dang & Luc Moreau & Salvy Bourguet, 2022. "A Pre-Sizing Method for Salient Pole Synchronous Reluctance Machines with Loss Minimization Control for a Small Urban Electrical Vehicle Considering the Driving Cycle," Energies, MDPI, vol. 15(23), pages 1-19, December.
    2. Gang Li & Weidong Zhu, 2022. "A Review on Up-to-Date Gearbox Technologies and Maintenance of Tidal Current Energy Converters," Energies, MDPI, vol. 15(23), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Bernard & Linh Dang & Luc Moreau & Salvy Bourguet, 2022. "A Pre-Sizing Method for Salient Pole Synchronous Reluctance Machines with Loss Minimization Control for a Small Urban Electrical Vehicle Considering the Driving Cycle," Energies, MDPI, vol. 15(23), pages 1-19, December.
    2. Mohanasundaram Anthony & Valsalal Prasad & Kannadasan Raju & Mohammed H. Alsharif & Zong Woo Geem & Junhee Hong, 2020. "Design of Rotor Blades for Vertical Axis Wind Turbine with Wind Flow Modifier for Low Wind Profile Areas," Sustainability, MDPI, vol. 12(19), pages 1-26, September.
    3. Navid Majdi Nasab & Jeff Kilby & Leila Bakhtiaryfard, 2021. "Case Study of a Hybrid Wind and Tidal Turbines System with a Microgrid for Power Supply to a Remote Off-Grid Community in New Zealand," Energies, MDPI, vol. 14(12), pages 1-21, June.
    4. João Paulo N. Torres & Ana Sofia De Jesus & Ricardo A. Marques Lameirinhas, 2022. "How to Improve an Offshore Wind Station," Energies, MDPI, vol. 15(13), pages 1-20, July.
    5. Tenis Ranjan Munaweera Thanthirige & Jamie Goggins & Michael Flanagan & William Finnegan, 2023. "A State-of-the-Art Review of Structural Testing of Tidal Turbine Blades," Energies, MDPI, vol. 16(10), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3174-:d:802899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.