IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3152-d802326.html
   My bibliography  Save this article

Thermal Analysis of Power Converters for DFIG-Based Wind Energy Conversion Systems during Voltage Sags

Author

Listed:
  • Igor Rodrigues de Oliveira

    (Graduate Program in Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil)

  • Fernando Lessa Tofoli

    (Department of Electrical Engineering, Federal University of São João del-Rei, São João del-Rei 36307-352, Brazil)

  • Victor Flores Mendes

    (Graduate Program in Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil)

Abstract

The doubly fed induction generator (DFIG) and back-to-back converter are very sensitive to power quality disturbances in grid-connected wind energy conversion systems (WECSs). Special attention has been given to protect the system from voltage sags, considering the introduction of several low-voltage ride-through (LVRT) techniques in the literature. However, only few works have really analyzed the behavior of power semiconductors during such phenomena in terms of the thermal stresses, whereas the existing studies are focused on balanced voltage sags only. In this context, this work presents a thermal profile analysis of power semiconductors in the grid-side converter (GSC) and rotor-side converter (RSC) considering a DFIG-based WECS submitted to symmetrical and asymmetrical voltage sags. The system is modeled using PLECS software and results on a 2.0 MW system are presented and thoroughly discussed. The results show that it is possible to meet the ride-through requirements during both balanced and unbalanced sags in terms of acceptable thermal stresses on the semiconductors as long as the back-to-back converter and its respective control system are properly designed.

Suggested Citation

  • Igor Rodrigues de Oliveira & Fernando Lessa Tofoli & Victor Flores Mendes, 2022. "Thermal Analysis of Power Converters for DFIG-Based Wind Energy Conversion Systems during Voltage Sags," Energies, MDPI, vol. 15(9), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3152-:d:802326
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3152/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3152/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emre Ozsoy & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Viliam Fedák & Fiaz Ahmad & Rasool Akhtar & Asif Sabanovic, 2017. "Control Strategy for a Grid-Connected Inverter under Unbalanced Network Conditions—A Disturbance Observer-Based Decoupled Current Approach," Energies, MDPI, vol. 10(7), pages 1-17, July.
    2. Hu, Jiabing & He, Yikang, 2011. "DFIG wind generation systems operating with limited converter rating considered under unbalanced network conditions – Analysis and control design," Renewable Energy, Elsevier, vol. 36(2), pages 829-847.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramesh Kumar Behara & Akshay Kumar Saha, 2023. "Neural Network Predictive Control for Improved Reliability of Grid-Tied DFIG-Based Wind Energy System under the Three-Phase Fault Condition," Energies, MDPI, vol. 16(13), pages 1-47, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bizhani, Hamed & Noroozian, Reza & Muyeen, S.M. & Blaabjerg, Frede, 2022. "Grid integration of multiple wind turbines using a multi-port converter—A novel simultaneous space vector modulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Hu, Jiabing & Yuan, Xiaoming, 2012. "VSC-based direct torque and reactive power control of doubly fed induction generator," Renewable Energy, Elsevier, vol. 40(1), pages 13-23.
    3. Boris Dumnic & Bane Popadic & Dragan Milicevic & Nikola Vukajlovic & Marko Delimar, 2019. "Control Strategy for a Grid Connected Converter in Active Unbalanced Distribution Systems," Energies, MDPI, vol. 12(7), pages 1-18, April.
    4. Imran Khan & Kamran Zeb & Waqar Ud Din & Saif Ul Islam & Muhammad Ishfaq & Sadam Hussain & Hee-Je Kim, 2019. "Dynamic Modeling and Robust Controllers Design for Doubly Fed Induction Generator-Based Wind Turbines under Unbalanced Grid Fault Conditions," Energies, MDPI, vol. 12(3), pages 1-23, January.
    5. Jaime Rodríguez Arribas & Adrián Fernández Rodríguez & Ángel Hermoso Muñoz & Carlos Veganzones Nicolás, 2014. "Low Voltage Ride-through in DFIG Wind Generators by Controlling the Rotor Current without Crowbars," Energies, MDPI, vol. 7(2), pages 1-22, January.
    6. Eklas Hossain & Ron Perez & Sanjeevikumar Padmanaban & Pierluigi Siano, 2017. "Investigation on the Development of a Sliding Mode Controller for Constant Power Loads in Microgrids," Energies, MDPI, vol. 10(8), pages 1-24, July.
    7. Sergio Saponara & Lucian Mihet-Popa, 2019. "Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid," Energies, MDPI, vol. 12(4), pages 1-9, February.
    8. Jing Li & Tao Zheng & Zengping Wang, 2018. "Short-Circuit Current Calculation and Harmonic Characteristic Analysis for a Doubly-Fed Induction Generator Wind Turbine under Converter Control," Energies, MDPI, vol. 11(9), pages 1-23, September.
    9. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2016. "Comprehensive overview of grid interfaced wind energy generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 260-281.
    10. Zhong Zheng & Geng Yang & Hua Geng, 2013. "Coordinated Control of a Doubly-Fed Induction Generator-Based Wind Farm and a Static Synchronous Compensator for Low Voltage Ride-through Grid Code Compliance during Asymmetrical Grid Faults," Energies, MDPI, vol. 6(9), pages 1-22, September.
    11. Ramji Tiwari & Sanjeevikumar Padmanaban & Ramesh Babu Neelakandan, 2017. "Coordinated Control Strategies for a Permanent Magnet Synchronous Generator Based Wind Energy Conversion System," Energies, MDPI, vol. 10(10), pages 1-17, September.
    12. Taufik Taluo & Leposava Ristić & Milutin Jovanović, 2021. "Dynamic Modeling and Control of BDFRG under Unbalanced Grid Conditions," Energies, MDPI, vol. 14(14), pages 1-22, July.
    13. Shahbazi, Mahmoud & Poure, Philippe & Saadate, Shahrokh & Zolghadri, Mohammad Reza, 2011. "Five-leg converter topology for wind energy conversion system with doubly fed induction generator," Renewable Energy, Elsevier, vol. 36(11), pages 3187-3194.
    14. Gabriel Nicolae Popa & Angela Iagăr & Corina Maria Diniș, 2020. "Considerations on Current and Voltage Unbalance of Nonlinear Loads in Residential and Educational Sectors," Energies, MDPI, vol. 14(1), pages 1-29, December.
    15. Fenglin Miao & Hongsheng Shi & Xiaoqing Zhang, 2015. "Impact of the Converter Control Strategies on the Drive Train of Wind Turbine during Voltage Dips," Energies, MDPI, vol. 8(10), pages 1-18, October.
    16. Mohammed Kh. AL-Nussairi & Ramazan Bayindir & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Pierluigi Siano, 2017. "Constant Power Loads (CPL) with Microgrids: Problem Definition, Stability Analysis and Compensation Techniques," Energies, MDPI, vol. 10(10), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3152-:d:802326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.