IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v40y2012i1p13-23.html
   My bibliography  Save this article

VSC-based direct torque and reactive power control of doubly fed induction generator

Author

Listed:
  • Hu, Jiabing
  • Yuan, Xiaoming

Abstract

This paper proposes a novel direct torque and reactive power control (DTC) for grid-connected doubly fed induction generators (DFIGs) in the wind power generation applications. The proposed DTC strategy employs a variable structure control (VSC) scheme to calculate the required rotor control voltage directly and to eliminate the instantaneous errors of active and reactive powers without involving any synchronous coordinate transformations, which essentially enhances the transient performance. Constant switching frequency is achieved as well by using space vector modulation (SVM), which eases the designs of power converter and ac harmonic filters. Simulated results on a 2MW grid-connected DFIG system are presented and compared with those of the classic voltage-oriented vector control (VC) and traditional look-up-table (LUT) direct power control (DPC). The proposed VSC DTC maintains enhanced transient performance similar to the LUT DPC and keeps the steady-state harmonic spectra at the identical level as the VC strategy when the network is strictly balanced. Besides, the VSC DTC strategy is capable of fully eliminating the double-frequency pulsations in both the electromagnetic torque and the stator reactive power during network voltage unbalance.

Suggested Citation

  • Hu, Jiabing & Yuan, Xiaoming, 2012. "VSC-based direct torque and reactive power control of doubly fed induction generator," Renewable Energy, Elsevier, vol. 40(1), pages 13-23.
  • Handle: RePEc:eee:renene:v:40:y:2012:i:1:p:13-23
    DOI: 10.1016/j.renene.2011.08.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111004678
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.08.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Jiabing & He, Yikang, 2011. "DFIG wind generation systems operating with limited converter rating considered under unbalanced network conditions – Analysis and control design," Renewable Energy, Elsevier, vol. 36(2), pages 829-847.
    2. Verij Kazemi, Mohammad & Sadeghi Yazdankhah, Ahmad & Madadi Kojabadi, Hossein, 2010. "Direct power control of DFIG based on discrete space vector modulation," Renewable Energy, Elsevier, vol. 35(5), pages 1033-1042.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shukla, Rishabh Dev & Tripathi, Ramesh Kumar & Thakur, Padmanabh, 2017. "DC grid/bus tied DFIG based wind energy system," Renewable Energy, Elsevier, vol. 108(C), pages 179-193.
    2. Ademi, Sul & Jovanovic, Milutin, 2016. "Control of doubly-fed reluctance generators for wind power applications," Renewable Energy, Elsevier, vol. 85(C), pages 171-180.
    3. Abuaisha, Tareq Saber, 2014. "General study of the control principles and dynamic fault behaviour of variable-speed wind turbine and wind farm generic models," Renewable Energy, Elsevier, vol. 68(C), pages 245-254.
    4. Salah Tamalouzt & Youcef Belkhier & Younes Sahri & Mohit Bajaj & Nasim Ullah & Md. Shahariar Chowdhury & Teerawet Titseesang & Kuaanan Techato, 2021. "Enhanced Direct Reactive Power Control-Based Multi-Level Inverter for DFIG Wind System under Variable Speeds," Sustainability, MDPI, vol. 13(16), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2016. "Comprehensive overview of grid interfaced wind energy generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 260-281.
    2. Shahbazi, Mahmoud & Poure, Philippe & Saadate, Shahrokh & Zolghadri, Mohammad Reza, 2011. "Five-leg converter topology for wind energy conversion system with doubly fed induction generator," Renewable Energy, Elsevier, vol. 36(11), pages 3187-3194.
    3. Ademi, Sul & Jovanovic, Milutin, 2016. "Control of doubly-fed reluctance generators for wind power applications," Renewable Energy, Elsevier, vol. 85(C), pages 171-180.
    4. Bizhani, Hamed & Noroozian, Reza & Muyeen, S.M. & Blaabjerg, Frede, 2022. "Grid integration of multiple wind turbines using a multi-port converter—A novel simultaneous space vector modulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Samiei Sarkhanloo, Mehdi & Sadeghi Yazdankhah, Ahmad & Kazemzadeh, Rasool, 2012. "A new control strategy for small wind farm with capabilities of supplying required reactive power and transient stability improvement," Renewable Energy, Elsevier, vol. 44(C), pages 32-39.
    6. Imran Khan & Kamran Zeb & Waqar Ud Din & Saif Ul Islam & Muhammad Ishfaq & Sadam Hussain & Hee-Je Kim, 2019. "Dynamic Modeling and Robust Controllers Design for Doubly Fed Induction Generator-Based Wind Turbines under Unbalanced Grid Fault Conditions," Energies, MDPI, vol. 12(3), pages 1-23, January.
    7. Karthik Tamvada & Rohit Babu, 2022. "Control of doubly fed induction generator for power quality improvement: an overview," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2809-2832, December.
    8. Jaime Rodríguez Arribas & Adrián Fernández Rodríguez & Ángel Hermoso Muñoz & Carlos Veganzones Nicolás, 2014. "Low Voltage Ride-through in DFIG Wind Generators by Controlling the Rotor Current without Crowbars," Energies, MDPI, vol. 7(2), pages 1-22, January.
    9. Igor Rodrigues de Oliveira & Fernando Lessa Tofoli & Victor Flores Mendes, 2022. "Thermal Analysis of Power Converters for DFIG-Based Wind Energy Conversion Systems during Voltage Sags," Energies, MDPI, vol. 15(9), pages 1-21, April.
    10. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.
    11. Jain, Bhavna & Jain, Shailendra & Nema, R.K., 2015. "Control strategies of grid interfaced wind energy conversion system: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 983-996.
    12. Jing Li & Tao Zheng & Zengping Wang, 2018. "Short-Circuit Current Calculation and Harmonic Characteristic Analysis for a Doubly-Fed Induction Generator Wind Turbine under Converter Control," Energies, MDPI, vol. 11(9), pages 1-23, September.
    13. Taveiros, F.E.V. & Barros, L.S. & Costa, F.B., 2015. "Back-to-back converter state-feedback control of DFIG (doubly-fed induction generator)-based wind turbines," Energy, Elsevier, vol. 89(C), pages 896-906.
    14. Zhong Zheng & Geng Yang & Hua Geng, 2013. "Coordinated Control of a Doubly-Fed Induction Generator-Based Wind Farm and a Static Synchronous Compensator for Low Voltage Ride-through Grid Code Compliance during Asymmetrical Grid Faults," Energies, MDPI, vol. 6(9), pages 1-22, September.
    15. Raju, S.Krishnama & Pillai, G.N., 2016. "Design and real time implementation of type-2 fuzzy vector control for DFIG based wind generators," Renewable Energy, Elsevier, vol. 88(C), pages 40-50.
    16. Fenglin Miao & Hongsheng Shi & Xiaoqing Zhang, 2015. "Impact of the Converter Control Strategies on the Drive Train of Wind Turbine during Voltage Dips," Energies, MDPI, vol. 8(10), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:40:y:2012:i:1:p:13-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.