IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3139-d801819.html
   My bibliography  Save this article

Pumped Storage Hydropower for Sustainable and Low-Carbon Electricity Grids in Pacific Rim Economies

Author

Listed:
  • Daniel Gilfillan

    (Fenner School of Environment and Society, The Australian National University, 48 Linnaeus Way, Acton, ACT 2601, Australia)

  • Jamie Pittock

    (Fenner School of Environment and Society, The Australian National University, 48 Linnaeus Way, Acton, ACT 2601, Australia)

Abstract

Because generating electricity significantly contributes to global greenhouse gas emissions, meeting the 2015 Paris Agreement and 2021 Glasgow Climate Pact requires rapidly transitioning to zero or low-emissions electricity grids. Though the installation of renewables-based generators—predominantly wind and solar-based systems—is accelerating worldwide, electrical energy storage systems, such as pumped storage hydropower, are needed to balance their weather-dependent output. The authors of this paper are the first to examine the status and potential for pumped storage hydropower development in 24 Pacific Rim economies (the 21 member economies of the Asia Pacific Economic Cooperation plus Cambodia, Lao PDR, and Myanmar). We show that there is 195 times the pumped storage hydropower potential in the 24 target economies as would be required to support 100% renewables-based electricity grids. Further to the electrical energy storage potential, we show that pumped storage hydropower is a low-cost, low-greenhouse-gas-emitting electrical energy storage technology that can be sited and designed to have minimal negative (or in some cases positive) social impacts (e.g., requirements for re-settlement as well as impacts on farming and livelihood practices) and environmental impacts (e.g., impacts on water quality and biodiversity). Because of the high potential for pumped storage hydropower-based electrical energy storage, only sites with low negative (or positive) social and environmental impacts such as brownfield sites and closed-loop PSH developments (where water is moved back and forth between two reservoirs, thus minimally disturbing natural hydrology) need be developed to support the transition to zero or low-carbon electricity grids. In this way, the advantages of well-designed and -sited pumped storage hydropower can effectively address ongoing conflict around the social and environmental impacts of conventional hydropower developments. Noting the International Hydropower Association advocacy for pumped storage hydropower, we make recommendations for how pumped storage hydropower can sustainably reduce electricity-sector greenhouse gas emissions, including through market reforms to encourage investment and the application of standards to avoid and mitigate environmental and social impacts.

Suggested Citation

  • Daniel Gilfillan & Jamie Pittock, 2022. "Pumped Storage Hydropower for Sustainable and Low-Carbon Electricity Grids in Pacific Rim Economies," Energies, MDPI, vol. 15(9), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3139-:d:801819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3139/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3139/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Clark, Richard & Zucker, Noah & Urpelainen, Johannes, 2020. "The future of coal-fired power generation in Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    2. Kapila, S. & Oni, A.O. & Gemechu, E.D. & Kumar, A., 2019. "Development of net energy ratios and life cycle greenhouse gas emissions of large-scale mechanical energy storage systems," Energy, Elsevier, vol. 170(C), pages 592-603.
    3. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Erratum: Global threats to human water security and river biodiversity," Nature, Nature, vol. 468(7321), pages 334-334, November.
    4. Safaei, Hossein & Keith, David W. & Hugo, Ronald J., 2013. "Compressed air energy storage (CAES) with compressors distributed at heat loads to enable waste heat utilization," Applied Energy, Elsevier, vol. 103(C), pages 165-179.
    5. Clemens Mostert & Berit Ostrander & Stefan Bringezu & Tanja Manuela Kneiske, 2018. "Comparing Electrical Energy Storage Technologies Regarding Their Material and Carbon Footprint," Energies, MDPI, vol. 11(12), pages 1-25, December.
    6. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G., 2014. "Seawater pumped storage systems and offshore wind parks in islands with low onshore wind potential. A fundamental case study," Energy, Elsevier, vol. 66(C), pages 470-486.
    7. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Global threats to human water security and river biodiversity," Nature, Nature, vol. 467(7315), pages 555-561, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iwan Setiawan & Ristina Siti Sundari & Chay Asdak & Ganjar Kurnia, 2023. "Integration of Tacit and Explicit Strategies in Sustainable Livelihood Recovery: A Case Study on Project-Affected Communities of a Hydropower Plant in West Java, Indonesia," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    2. Zejneba Topalović & Reinhard Haas, 2024. "Role of Renewables in Energy Storage Economic Viability in the Western Balkans," Energies, MDPI, vol. 17(4), pages 1-19, February.
    3. Wenwei Hou & Fan Liu & Yanqin Zhang & Jiaying Dong & Shumeng Lin & Minhua Wang, 2024. "Research Progress and Hotspot Analysis of Low-Carbon Landscapes Based on CiteSpace Analysis," Sustainability, MDPI, vol. 16(17), pages 1-24, September.
    4. Manikas, Konstantinos & Skroufouta, Sofia & Baltas, Evangelos, 2024. "Simulation and evaluation of pumped hydropower storage (PHPS) system at Kastraki reservoir," Renewable Energy, Elsevier, vol. 222(C).
    5. Xin Lyu & Ke Yang & Juejing Fang & Jinzhou Tang & Yu Wang, 2022. "Feasibility Study of Construction of Pumped Storage Power Station Using Abandoned Mines: A Case Study of the Shitai Mine," Energies, MDPI, vol. 16(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    2. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    3. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Yiwen Chiu & Yi Yang & Cody Morse, 2022. "Quantifying carbon footprint for ecological river restoration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 952-970, January.
    5. Stella Tsani & Phoebe Koundouri & Ebun Akinsete, 2020. "Resource management and sustainable development: A review of the European water policies in accordance with the United Nations' Sustainable Development Goals," DEOS Working Papers 2036, Athens University of Economics and Business.
    6. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    7. Rabeya Sultana Leya & Sujit Kumar Bala & Imran Hossain Newton & Md. Arif Chowdhury & Shamim Mahabubul Haque, 2022. "Water security assessment of a peri-urban area: a study in Singair Upazila of Manikganj district of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14106-14129, December.
    8. Ting Xu & Baisha Weng & Denghua Yan & Kun Wang & Xiangnan Li & Wuxia Bi & Meng Li & Xiangjun Cheng & Yinxue Liu, 2019. "Wetlands of International Importance: Status, Threats, and Future Protection," IJERPH, MDPI, vol. 16(10), pages 1-23, May.
    9. Donna, Javier & Espin-Sanchez, Jose, 2014. "The Illiquidity of Water Markets," MPRA Paper 55078, University Library of Munich, Germany.
    10. Kaiser, Nina N. & Ghermandi, Andrea & Feld, Christian K. & Hershkovitz, Yaron & Palt, Martin & Stoll, Stefan, 2021. "Societal benefits of river restoration – Implications from social media analysis," Ecosystem Services, Elsevier, vol. 50(C).
    11. Teng Wang & Jingjing Yan & Jinlong Ma & Fei Li & Chaoyang Liu & Ying Cai & Si Chen & Jingjing Zeng & Yu Qi, 2018. "A Fuzzy Comprehensive Assessment and Hierarchical Management System for Urban Lake Health: A Case Study on the Lakes in Wuhan City, Hubei Province, China," IJERPH, MDPI, vol. 15(12), pages 1-16, November.
    12. Ran He & Zhen Tang & Zengchuan Dong & Shiyun Wang, 2020. "Performance Evaluation of Regional Water Environment Integrated Governance: Case Study from Henan Province, China," IJERPH, MDPI, vol. 17(7), pages 1-13, April.
    13. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    14. Yanting Zheng & Jing He & Wenxiang Zhang & Aifeng Lv, 2023. "Assessing Water Security and Coupling Coordination in the Lancang–Mekong River Basin for Sustainable Development," Sustainability, MDPI, vol. 15(24), pages 1-20, December.
    15. Hassan Tolba Aboelnga & Lars Ribbe & Franz-Bernd Frechen & Jamal Saghir, 2019. "Urban Water Security: Definition and Assessment Framework," Resources, MDPI, vol. 8(4), pages 1-19, November.
    16. Steve Hamner & Bonnie L. Brown & Nur A. Hasan & Michael J. Franklin & John Doyle & Margaret J. Eggers & Rita R. Colwell & Timothy E. Ford, 2019. "Metagenomic Profiling of Microbial Pathogens in the Little Bighorn River, Montana," IJERPH, MDPI, vol. 16(7), pages 1-18, March.
    17. Langhans, Kelley E. & Schmitt, Rafael J.P. & Chaplin-Kramer, Rebecca & Anderson, Christopher B. & Vargas Bolaños, Christian & Vargas Cabezas, Fermin & Dirzo, Rodolfo & Goldstein, Jesse A. & Horangic, , 2022. "Modeling multiple ecosystem services and beneficiaries of riparian reforestation in Costa Rica," Ecosystem Services, Elsevier, vol. 57(C).
    18. Juliana Marcal & Blanca Antizar-Ladislao & Jan Hofman, 2021. "Addressing Water Security: An Overview," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    19. Hossein Mikhak & Mehdi Rahimian & Saeed Gholamrezai, 2022. "Implications of changing cropping pattern to low water demand plants due to climate change: evidence from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9833-9850, August.
    20. Claudia Bita-Nicolae, 2022. "Distribution and Conservation Status of the Mountain Wetlands in the Romanian Carpathians," Sustainability, MDPI, vol. 14(24), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3139-:d:801819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.