IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2858-d793414.html
   My bibliography  Save this article

Recent Advances in Greener and Energy Efficient Alkene Epoxidation Processes

Author

Listed:
  • Misbahu Ladan Mohammed

    (Department of Pure and Applied Chemistry, Usmanu Danfodiyo University, Sokoto 840004, Nigeria)

  • Basudeb Saha

    (Engineering Department, Lancaster University, Lancaster LA1 4YW, UK)

Abstract

The chemical industry is considered to be one of the largest consumers of energy in the manufacturing sector. As the cost of energy is rising rapidly, coupled with the increasingly stringent standards for the release of harmful chemicals and gases into the environment, more attention is now focused on developing energy efficient chemical processes that could significantly reduce both operational costs and greenhouse gas emissions. Alkene epoxidation is an important chemical process as the resultant epoxides are highly reactive compounds that are used as platform chemicals for the production of commercially important products for flavours, fragrances, paints and pharmaceuticals. A number of epoxidation methods have been developed over the past decade with the ultimate aim of minimising waste generation and energy consumption. In this review paper, some of the recent advances in epoxides synthesis using energy efficient processes are discussed. The epoxidation methods may provide sustainability in terms of environmental impact and energy consumption.

Suggested Citation

  • Misbahu Ladan Mohammed & Basudeb Saha, 2022. "Recent Advances in Greener and Energy Efficient Alkene Epoxidation Processes," Energies, MDPI, vol. 15(8), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2858-:d:793414
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2858/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2858/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Onyenkeadi, Victor & Kellici, Suela & Saha, Basudeb, 2018. "Greener synthesis of 1,2-butylene carbonate from CO2 using graphene-inorganic nanocomposite catalyst," Energy, Elsevier, vol. 165(PA), pages 867-876.
    2. Lesage, Dries & Van de Graaf, Thijs & Westphal, Kirsten, 2010. "G8+5 collaboration on energy efficiency and IPEEC: Shortcut to a sustainable future?," Energy Policy, Elsevier, vol. 38(11), pages 6419-6427, November.
    3. Bilgen, S., 2014. "Structure and environmental impact of global energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 890-902.
    4. Yao, Xingjun & Zhang, Yan & Du, Lingyun & Liu, Junhai & Yao, Jianfeng, 2015. "Review of the applications of microreactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 519-539.
    5. Rahman, Md. Saifur & Noman, Abu Hanifa Md. & Shahari, Farihana & Aslam, Mohamed & Gee, Chan Sok & Isa, Che Ruhana & Pervin, Sajeda, 2016. "Efficient energy consumption in industrial sectors and its effect on environment: A comparative analysis between G8 and Southeast Asian emerging economies," Energy, Elsevier, vol. 97(C), pages 82-89.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan Xiao & Zhi-Hua Hu & Ke-Xin Wang & Pei-Hua Fu, 2015. "Spatial Distribution of Energy Consumption and Carbon Emission of Regional Logistics," Sustainability, MDPI, vol. 7(7), pages 1-20, July.
    2. Wei Zheng & Patrick Paul Walsh, 2018. "Urbanization, trade openness, and air pollution: a provincial level analysis of China," Working Papers 201818, Geary Institute, University College Dublin.
    3. Hisham Alidrisi, 2021. "The Development of an Efficiency-Based Global Green Manufacturing Innovation Index: An Input-Oriented DEA Approach," Sustainability, MDPI, vol. 13(22), pages 1-11, November.
    4. Dejian Yu & Sun Meng, 2018. "An overview of biomass energy research with bibliometric indicators," Energy & Environment, , vol. 29(4), pages 576-590, June.
    5. Zhong, Zhangqi & Jiang, Lei & Zhou, Peng, 2018. "Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective," Energy, Elsevier, vol. 147(C), pages 858-875.
    6. Bisi Olaniyan & Basudeb Saha, 2020. "Multiobjective Optimization for the Greener Synthesis of Chloromethyl Ethylene Carbonate by CO 2 and Epichlorohydrin via Response Surface Methodology," Energies, MDPI, vol. 13(3), pages 1-27, February.
    7. Anvari, Simin & Szlęk, Andrzej & Arteconi, Alessia & Desideri, Umberto & Rosen, Marc A., 2023. "Comparative study of steam injection modes for a proposed biomass-driven cogeneration cycle: Performance improvement and CO2 emission reduction," Applied Energy, Elsevier, vol. 329(C).
    8. Saleh, Layla & Mezher, Toufic, 2021. "Techno-economic analysis of sustainability and externality costs of water desalination production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Azam, Muhammad & Khan, Abdul Qayyum & Zaman, Khalid & Ahmad, Mehboob, 2015. "Factors determining energy consumption: Evidence from Indonesia, Malaysia and Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1123-1131.
    10. Qian Zhou & Naota Hanasaki & Shinichiro Fujimori & Yoshimitsu Masaki & Yasuaki Hijioka, 2018. "Economic consequences of global climate change and mitigation on future hydropower generation," Climatic Change, Springer, vol. 147(1), pages 77-90, March.
    11. Xiaran Zhang & Xiaoxia Rong & Meng Cai & Qingchun Meng, 2019. "Collaborative Optimization of Emissions and Abatement Costs for Air Pollutants and Greenhouse Gases from the Perspective of Energy Structure: An Empirical Analysis in Tianjin," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
    12. Salvatori, Simone & Benedetti, Miriam & Bonfà, Francesca & Introna, Vito & Ubertini, Stefano, 2018. "Inter-sectorial benchmarking of compressed air generation energy performance: Methodology based on real data gathering in large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 217(C), pages 266-280.
    13. Lejla Terzić, 2023. "Why is the transition to a green economy important for achieving sustainability? A review of some theoretical approaches and empirical research presented in the literature," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 3, pages 307-332.
    14. Li, Xiaopeng & Sun, Shiwen & Xia, Chengyi, 2019. "Reputation-based adaptive adjustment of link weight among individuals promotes the cooperation in spatial social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 810-820.
    15. Carbajo, Ruth & Cabeza, Luisa F., 2018. "Renewable energy research and technologies through responsible research and innovation looking glass: Reflexions, theoretical approaches and contemporary discourses," Applied Energy, Elsevier, vol. 211(C), pages 792-808.
    16. Zhang, Xuemin & Zhang, Shanling & Yuan, Qing & Liu, Qingqing & Huang, Tingting & Li, Jinping & Wu, Qingbai & Zhang, Peng, 2024. "Gas production from hydrates by CH4-CO2 replacement: Effect of N2 and intermittent heating," Energy, Elsevier, vol. 288(C).
    17. Chen, Xia & Fu, Qiang & Chang, Chun-Ping, 2021. "What are the shocks of climate change on clean energy investment: A diversified exploration," Energy Economics, Elsevier, vol. 95(C).
    18. Shuai, Chenyang & Shen, Liyin & Jiao, Liudan & Wu, Ya & Tan, Yongtao, 2017. "Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011," Applied Energy, Elsevier, vol. 187(C), pages 310-325.
    19. Guo, Sen & Zhao, Huiru, 2015. "Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective," Applied Energy, Elsevier, vol. 158(C), pages 390-402.
    20. Sadik-Zada, Elkhan Richard & Gatto, Andrea & Weißnicht, Yannic, 2024. "Back to the future: Revisiting the perspectives on nuclear fusion and juxtaposition to existing energy sources," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2858-:d:793414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.