IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2836-d792905.html
   My bibliography  Save this article

Digital Twin Concept Developing on an Electrical Distribution System—An Application Case

Author

Listed:
  • Sabryna V. Fernandes

    (Sustainable Energy Center, CERTI Foundation, Florianópolis 88040-970, SC, Brazil)

  • Diogo V. João

    (Sustainable Energy Center, CERTI Foundation, Florianópolis 88040-970, SC, Brazil)

  • Beatriz B. Cardoso

    (Sustainable Energy Center, CERTI Foundation, Florianópolis 88040-970, SC, Brazil)

  • Marcos A. I. Martins

    (Sustainable Energy Center, CERTI Foundation, Florianópolis 88040-970, SC, Brazil)

  • Edgar G. Carvalho

    (NT&I—Smart Grid Brasil, Enel Distribuição São Paulo, São Paulo 01000-000, SP, Brazil)

Abstract

Through the transformation that the electrical sector has been passing by, improvements in asset management and the guarantee of sustainable and quality services have become essential aspects for power companies. Thus, the digitalization of energy utilities presents itself as an important and crucial process. A concept that involves a variety of innovative trends is the digital twin. It consists of a 3D virtual replica of existing physical objects and real-time monitoring of certain measures. By developing a digital twin in the electrical power grid, a virtual replica of the network is obtained providing network virtual maps, 3D asset models, dynamic and real-time data of grid assets, and IoT sensing. All these data can feed a platform where AI-based models and advanced field operation technologies and solutions will be applied. With a Network Digital Twin©development, applications involving on-field activities can be improved through augmented reality (AR) and virtual reality (VR) to enhance workforce operations. This paper discusses the best practices for the development of a digital twin for the electrical power sector. These practices were found during the development of a project carried out by Enel Distribuição São Paulo, applying a living lab concept in the densest region of Brazil. The results of this paper present 3D images captured with specialized tools, and how they influence the workforce activities of human interface operation. Furthermore, financial and operational returns are presented through a cost–benefit analysis for each relevant aspect.

Suggested Citation

  • Sabryna V. Fernandes & Diogo V. João & Beatriz B. Cardoso & Marcos A. I. Martins & Edgar G. Carvalho, 2022. "Digital Twin Concept Developing on an Electrical Distribution System—An Application Case," Energies, MDPI, vol. 15(8), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2836-:d:792905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2836/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2836/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Piotr F. Borowski, 2021. "Digitization, Digital Twins, Blockchain, and Industry 4.0 as Elements of Management Process in Enterprises in the Energy Sector," Energies, MDPI, vol. 14(7), pages 1-20, March.
    2. Di Silvestre, Maria Luisa & Gallo, Pierluigi & Guerrero, Josep M. & Musca, Rossano & Riva Sanseverino, Eleonora & Sciumè, Giuseppe & Vásquez, Juan C. & Zizzo, Gaetano, 2020. "Blockchain for power systems: Current trends and future applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erdal Irmak & Ersan Kabalci & Yasin Kabalci, 2023. "Digital Transformation of Microgrids: A Review of Design, Operation, Optimization, and Cybersecurity," Energies, MDPI, vol. 16(12), pages 1-58, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnieszka Kuś & Dorota Grego-Planer, 2021. "A Model of Innovation Activity in Small Enterprises in the Context of Selected Financial Factors: The Example of the Renewable Energy Sector," Energies, MDPI, vol. 14(10), pages 1-17, May.
    2. Long Xue & Qianyu Zhang & Xuemang Zhang & Chengyu Li, 2022. "Can Digital Transformation Promote Green Technology Innovation?," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    3. Jun Liu & Yu Qian & Huihong Chang & Jeffrey Yi-Lin Forrest, 2022. "The Impact of Technology Innovation on Enterprise Capacity Utilization—Evidence from China’s Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    4. Ning, Jiajun & Xiong, Lixin, 2024. "Analysis of the dynamic evolution process of the digital transformation of renewable energy enterprises based on the cooperative and evolutionary game model," Energy, Elsevier, vol. 288(C).
    5. Pei Zhang & Peiran Chen & Fan Xiao & Yong Sun & Shuyan Ma & Ziwei Zhao, 2022. "The Impact of Information Infrastructure on Air Pollution: Empirical Evidence from China," IJERPH, MDPI, vol. 19(21), pages 1-17, November.
    6. Assem Urekeshova & Zhibek Rakhmetulina & Igor Dubina & Sergey Evgenievich Barykin & Angela Bahauovna Mottaeva & Shakizada Uteulievna Niyazbekova, 2023. "The Impact of Digital Finance on Clean Energy and Green Bonds through the Dynamics of Spillover," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 441-452, March.
    7. Anna Borkovcová & Miloslava Černá & Marcela Sokolová, 2022. "Blockchain in the Energy Sector—Systematic Review," Sustainability, MDPI, vol. 14(22), pages 1-12, November.
    8. Krzysztof Bartczak & Stanisław Łobejko, 2022. "The Implementation Environment for a Digital Technology Platform of Renewable Energy Sources," Energies, MDPI, vol. 15(16), pages 1-16, August.
    9. Hedan Ma & Xinliang Jia & Xin Wang, 2022. "Digital Transformation, Ambidextrous Innovation and Enterprise Value: Empirical Analysis Based on Listed Chinese Manufacturing Companies," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    10. Jakov Batelić & Karlo Griparić & Dario Matika, 2021. "Impact of Remediation-Based Maintenance on the Reliability of a Coal-Fired Power Plant Using Generalized Stochastic Petri Nets," Energies, MDPI, vol. 14(18), pages 1-14, September.
    11. Nguyen Thanh Viet & Alla G. Kravets, 2022. "The New Method for Analyzing Technology Trends of Smart Energy Asset Performance Management," Energies, MDPI, vol. 15(18), pages 1-26, September.
    12. Tsao, Yu-Chung & Thanh, Vo-Van, 2021. "Toward sustainable microgrids with blockchain technology-based peer-to-peer energy trading mechanism: A fuzzy meta-heuristic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    13. Yahia Baashar & Gamal Alkawsi & Ammar Ahmed Alkahtani & Wahidah Hashim & Rina Azlin Razali & Sieh Kiong Tiong, 2021. "Toward Blockchain Technology in the Energy Environment," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    14. Samar Fatima & Verner Püvi & Ammar Arshad & Mahdi Pourakbari-Kasmaei & Matti Lehtonen, 2021. "Comparison of Economical and Technical Photovoltaic Hosting Capacity Limits in Distribution Networks," Energies, MDPI, vol. 14(9), pages 1-23, April.
    15. Radosław Miśkiewicz & Agnieszka Rzepka & Ryszard Borowiecki & Zbigniew Olesińki, 2021. "Energy Efficiency in the Industry 4.0 Era: Attributes of Teal Organisations," Energies, MDPI, vol. 14(20), pages 1-14, October.
    16. Piotr F. Borowski, 2022. "Management of Energy Enterprises in Zero-Emission Conditions: Bamboo as an Innovative Biomass for the Production of Green Energy by Power Plants," Energies, MDPI, vol. 15(5), pages 1-16, March.
    17. Iryna Sotnyk & Tetiana Kurbatova & Oleksandr Kubatko & Olha Prokopenko & Gunnar Prause & Yevhen Kovalenko & Galyna Trypolska & Uliana Pysmenna, 2021. "Energy Security Assessment of Emerging Economies under Global and Local Challenges," Energies, MDPI, vol. 14(18), pages 1-20, September.
    18. Zhang, Shixu & Li, Yaowang & Du, Ershun & Fan, Chuan & Wu, Zhenlong & Yao, Yong & Liu, Lurao & Zhang, Ning, 2023. "A review and outlook on cloud energy storage: An aggregated and shared utilizing method of energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    19. Barbara Siuta-Tokarska & Sylwia Kruk & Paweł Krzemiński & Agnieszka Thier & Katarzyna Żmija, 2022. "Digitalisation of Enterprises in the Energy Sector: Drivers—Business Models—Prospective Directions of Changes," Energies, MDPI, vol. 15(23), pages 1-21, November.
    20. Marek Gaworski & Piotr F. Borowski & Łukasz Kozioł, 2022. "Supporting Decision-Making in the Technical Equipment Selection Process by the Method of Contradictory Evaluations," Sustainability, MDPI, vol. 14(13), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2836-:d:792905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.