IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2700-d788197.html
   My bibliography  Save this article

Analogies in the Analysis of the Thermal Status of Batteries and Internal Combustion Engines for Mobility

Author

Listed:
  • Luigi Sequino

    (Institute of Science and Technologies for Sustainable Energy and Mobility—CNR, Via G. Marconi, 4, 80125 Naples, Italy)

  • Ezio Mancaruso

    (Institute of Science and Technologies for Sustainable Energy and Mobility—CNR, Via G. Marconi, 4, 80125 Naples, Italy)

  • Bianca Maria Vaglieco

    (Institute of Science and Technologies for Sustainable Energy and Mobility—CNR, Via G. Marconi, 4, 80125 Naples, Italy)

Abstract

Thermal management is an important research area for the automotive sector in order to make high-efficiency and low-impact future vehicles. The transition from internal combustion engines to battery systems in the automotive field requires new skills to be achieved in the shortest possible time. The well-consolidated knowledge of thermal management of engine systems can be rearranged to face new challenges regarding the thermal control of batteries. The present work aims to show the analogies between the thermal behavior of an engine component, such as the piston, and of a battery. The thermodynamic processes involved during the operation are described, experimentally investigated, and modeled. The external temperature of the piston window is measured once per cycle with a K-type sheathed thermocouple, while the surface temperature of the battery is detected via infrared imaging. An almost-fixed stabilization time of 500 s is observed for the engine while it varies with the current load for the battery ranging from 1800 s to 3000 s, for the tested cases. Different temperature increments are also observed. Two mono-dimensional (1D) models of heat transfer are built using the finite-difference method. Good agreement with the experimental data is quantitatively demonstrated by a Normalize Root Mean Square Error lower than 0.07 for all the test cases and systems, except for the battery charging phase. The analysis of the temperature provides an estimation of the heat losses for the two systems, spanning from 15% to 27% for the engine and from 6% to 10% for the battery. The analysis carried out in this work can provide a methodology to understand and improve the thermal management of the new mobility system.

Suggested Citation

  • Luigi Sequino & Ezio Mancaruso & Bianca Maria Vaglieco, 2022. "Analogies in the Analysis of the Thermal Status of Batteries and Internal Combustion Engines for Mobility," Energies, MDPI, vol. 15(7), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2700-:d:788197
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2700/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2700/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Balakumar Balasingam & Mostafa Ahmed & Krishna Pattipati, 2020. "Battery Management Systems—Challenges and Some Solutions," Energies, MDPI, vol. 13(11), pages 1-19, June.
    2. Sumukh Surya & Akash Samanta & Vinicius Marcis & Sheldon Williamson, 2022. "Smart Core and Surface Temperature Estimation Techniques for Health-Conscious Lithium-Ion Battery Management Systems: A Model-to-Model Comparison," Energies, MDPI, vol. 15(2), pages 1-21, January.
    3. Liimatainen, Heikki & van Vliet, Oscar & Aplyn, David, 2019. "The potential of electric trucks – An international commodity-level analysis," Applied Energy, Elsevier, vol. 236(C), pages 804-814.
    4. Raijmakers, L.H.J. & Danilov, D.L. & Eichel, R.-A. & Notten, P.H.L., 2019. "A review on various temperature-indication methods for Li-ion batteries," Applied Energy, Elsevier, vol. 240(C), pages 918-945.
    5. Yan Wang & Qing Gao & Tianshi Zhang & Guohua Wang & Zhipeng Jiang & Yunxia Li, 2017. "Advances in Integrated Vehicle Thermal Management and Numerical Simulation," Energies, MDPI, vol. 10(10), pages 1-30, October.
    6. Shi, Xiao & Pan, Jian & Wang, Hewu & Cai, Hua, 2019. "Battery electric vehicles: What is the minimum range required?," Energy, Elsevier, vol. 166(C), pages 352-358.
    7. Gequn Shu & Chen Hu & Hua Tian & Xiaoya Li & Zhigang Yu & Mingtao Wang, 2019. "Analysis and Optimization of Coupled Thermal Management Systems Used in Vehicles," Energies, MDPI, vol. 12(7), pages 1-17, April.
    8. Yayuan Liu & Yangying Zhu & Yi Cui, 2019. "Challenges and opportunities towards fast-charging battery materials," Nature Energy, Nature, vol. 4(7), pages 540-550, July.
    9. Nykvist, Björn & Sprei, Frances & Nilsson, Måns, 2019. "Assessing the progress toward lower priced long range battery electric vehicles," Energy Policy, Elsevier, vol. 124(C), pages 144-155.
    10. Thomas Imre Cyrille Buidin & Florin Mariasiu, 2021. "Battery Thermal Management Systems: Current Status and Design Approach of Cooling Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mojgan Fayyazi & Paramjotsingh Sardar & Sumit Infent Thomas & Roonak Daghigh & Ali Jamali & Thomas Esch & Hans Kemper & Reza Langari & Hamid Khayyam, 2023. "Artificial Intelligence/Machine Learning in Energy Management Systems, Control, and Optimization of Hydrogen Fuel Cell Vehicles," Sustainability, MDPI, vol. 15(6), pages 1-38, March.
    2. Yuqiang Zeng & Fengyu Shen & Buyi Zhang & Jaeheon Lee & Divya Chalise & Qiye Zheng & Yanbao Fu & Sumanjeet Kaur & Sean D. Lubner & Vincent S. Battaglia & Bryan D. McCloskey & Michael C. Tucker & Ravi , 2023. "Nonintrusive thermal-wave sensor for operando quantification of degradation in commercial batteries," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Shi, Haotian & Wang, Shunli & Huang, Qi & Fernandez, Carlos & Liang, Jianhong & Zhang, Mengyun & Qi, Chuangshi & Wang, Liping, 2024. "Improved electric-thermal-aging multi-physics domain coupling modeling and identification decoupling of complex kinetic processes based on timescale quantification in lithium-ion batteries," Applied Energy, Elsevier, vol. 353(PB).
    4. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    5. Yuqiang Zeng & Buyi Zhang & Yanbao Fu & Fengyu Shen & Qiye Zheng & Divya Chalise & Ruijiao Miao & Sumanjeet Kaur & Sean D. Lubner & Michael C. Tucker & Vincent Battaglia & Chris Dames & Ravi S. Prashe, 2023. "Extreme fast charging of commercial Li-ion batteries via combined thermal switching and self-heating approaches," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Raja Mazuir Raja Ahsan Shah & Mansour Al Qubeissi & Hazem Youssef & Hakan Serhad Soyhan, 2023. "Battery Thermal Management: An Application to Petrol Hybrid Electric Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    7. Olayiwola Alatise & Arkadeep Deb & Erfan Bashar & Jose Ortiz Gonzalez & Saeed Jahdi & Walid Issa, 2023. "A Review of Power Electronic Devices for Heavy Goods Vehicles Electrification: Performance and Reliability," Energies, MDPI, vol. 16(11), pages 1-25, May.
    8. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    9. Geels, Frank W. & Ayoub, Martina, 2023. "A socio-technical transition perspective on positive tipping points in climate change mitigation: Analysing seven interacting feedback loops in offshore wind and electric vehicles acceleration," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    10. Felix Hinnüber & Marek Szarucki & Katarzyna Szopik-Depczyńska, 2019. "The Effects of a First-Time Experience on the Evaluation of Battery Electric Vehicles by Potential Consumers," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    11. Okay, Kamil & Eray, Sermet & Eray, Aynur, 2022. "Development of prototype battery management system for PV system," Renewable Energy, Elsevier, vol. 181(C), pages 1294-1304.
    12. Qin, Yudi & Du, Jiuyu & Lu, Languang & Gao, Ming & Haase, Frank & Li, Jianqiu & Ouyang, Minggao, 2020. "A rapid lithium-ion battery heating method based on bidirectional pulsed current: Heating effect and impact on battery life," Applied Energy, Elsevier, vol. 280(C).
    13. Korberg, Andrei David & Skov, Iva Ridjan & Mathiesen, Brian Vad, 2020. "The role of biogas and biogas-derived fuels in a 100% renewable energy system in Denmark," Energy, Elsevier, vol. 199(C).
    14. Mehdi Jahangir Samet & Heikki Liimatainen & Oscar Patrick René van Vliet & Markus Pöllänen, 2021. "Road Freight Transport Electrification Potential by Using Battery Electric Trucks in Finland and Switzerland," Energies, MDPI, vol. 14(4), pages 1-22, February.
    15. Thomas F. Landinger & Guenter Schwarzberger & Guenter Hofer & Matthias Rose & Andreas Jossen, 2021. "Power Line Communications for Automotive High Voltage Battery Systems: Channel Modeling and Coexistence Study with Battery Monitoring," Energies, MDPI, vol. 14(7), pages 1-26, March.
    16. Bingxiang Sun & Xianjie Qi & Donglin Song & Haijun Ruan, 2023. "Review of Low-Temperature Performance, Modeling and Heating for Lithium-Ion Batteries," Energies, MDPI, vol. 16(20), pages 1-37, October.
    17. Fady M. A. Hassouna, 2022. "Urban Freight Transport Electrification in Westbank, Palestine: Environmental and Economic Benefits," Energies, MDPI, vol. 15(11), pages 1-12, June.
    18. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    19. Christina Littlejohn & Stef Proost, 2022. "How to be a good forerunner in carbon neutral trucking," Revue d'économie industrielle, De Boeck Université, vol. 0(2), pages 167-197.
    20. Prarthana Pillai & Sneha Sundaresan & Pradeep Kumar & Krishna R. Pattipati & Balakumar Balasingam, 2022. "Open-Circuit Voltage Models for Battery Management Systems: A Review," Energies, MDPI, vol. 15(18), pages 1-25, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2700-:d:788197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.