IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2687-d787918.html
   My bibliography  Save this article

Parameter Studies on Hydraulic Fracturing in Brittle Rocks Based on a Modified Hydromechanical Coupling Model

Author

Listed:
  • Yulong Zhang

    (College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China)

  • Yiping Zhang

    (College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China)

  • Bei Han

    (Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China)

  • Xin Zhang

    (College of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China)

  • Yun Jia

    (Laboratory of Mechanics of Lille, University of Lille, 59650 Villeneuve d’Ascq, France)

Abstract

In this paper, we present a numerical study of hydraulic fracturing in brittle rock by using particle flow simulation. The emphasis is put on the influence of in situ stress, differential stress, fluid injection rate, fluid viscosity and borehole size on hydraulic fracturing behavior. To this end, an improved hydromechanical coupling model is first introduced to better describe fluid flow and local deformation of particle-based rocks. A series of parameter sensitivity studies are then conducted under the framework of particle flow simulation. Modelling results suggest that the breakdown pressure and time to fracture both linearly increase with confining stress, and hydraulic fracturing patterns present a distinct transition from brittle to ductile. Fluid injection rate and fluid viscosity have similar influences on hydraulic fracturing propagation, their value decrease leads to borehole pressure decrement and time to fracture prolongation. However, the former mainly controls the time to initial cracking, while the latter largely decides the duration of fracturing propagation. As for borehole radius, its increases can directly enhance the fluid diffusion zone, which further intensifies the nonlinear property of borehole pressure, leads to breakdown pressure decrease, prolongs time to fracture and forms more complex hydraulic fractures.

Suggested Citation

  • Yulong Zhang & Yiping Zhang & Bei Han & Xin Zhang & Yun Jia, 2022. "Parameter Studies on Hydraulic Fracturing in Brittle Rocks Based on a Modified Hydromechanical Coupling Model," Energies, MDPI, vol. 15(7), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2687-:d:787918
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2687/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2687/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianming He & Lekan Olatayo Afolagboye & Chong Lin & Xiaole Wan, 2018. "An Experimental Investigation of Hydraulic Fracturing in Shale Considering Anisotropy and Using Freshwater and Supercritical CO 2," Energies, MDPI, vol. 11(3), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Shahzad Kamal & Marwan Mohammed & Mohamed Mahmoud & Salaheldin Elkatatny, 2018. "Development of Chelating Agent-Based Polymeric Gel System for Hydraulic Fracturing," Energies, MDPI, vol. 11(7), pages 1-15, June.
    2. Seyedalireza Khatibi & Mehdi Ostadhassan & David Tuschel & Thomas Gentzis & Humberto Carvajal-Ortiz, 2018. "Evaluating Molecular Evolution of Kerogen by Raman Spectroscopy: Correlation with Optical Microscopy and Rock-Eval Pyrolysis," Energies, MDPI, vol. 11(6), pages 1-19, May.
    3. Xiangxiang Zhang & Jianguo Wang & Feng Gao & Xiaolin Wang, 2018. "Numerical Study of Fracture Network Evolution during Nitrogen Fracturing Processes in Shale Reservoirs," Energies, MDPI, vol. 11(10), pages 1-22, September.
    4. Ion Pană & Iuliana Veronica Gheţiu & Ioana Gabriela Stan & Florinel Dinu & Gheorghe Brănoiu & Silvian Suditu, 2022. "The Use of Hydraulic Fracturing in Stimulation of the Oil and Gas Wells in Romania," Sustainability, MDPI, vol. 14(9), pages 1-33, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2687-:d:787918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.