IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2676-d787819.html
   My bibliography  Save this article

A Practical Metric to Evaluate the Ramp Events of Wind Generating Resources to Enhance the Security of Smart Energy Systems

Author

Listed:
  • EunJi Ahn

    (Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul 03760, Korea)

  • Jin Hur

    (Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul 03760, Korea)

Abstract

The energy industry, primarily based on the use of fossil fuels (e.g., coal and oil) is rapidly shifting toward renewable energy for securing sustainable resources. Thus, preparing for large wind power ramp events is essential to retain reliable and secure power systems. This study proposed a new statistical approach to predict wind power ramp events, and evaluated the performance of prediction. The empirical data, which is the observed wind power output data and wind speed data from Taebaek (South Korea) were used for analyzing ramp events and for evaluation. Based on the data analysis, a practical metric for evaluating the performance of wind power ramp events forecasting was developed and presented in detail. Notably, the accuracy of forecasting was evaluated through various metrics, whereas the normalized mean absolute error (NMAE) analysis demonstrated ≤ 10% values for all the analyzed months. In addition, a system review was conducted to check if the methodology suggested in this study has helped enhance the security of power systems. The results show that evaluating and considering the ramp events can improve the accuracy of wind power output forecasting which can secure the smart energy systems.

Suggested Citation

  • EunJi Ahn & Jin Hur, 2022. "A Practical Metric to Evaluate the Ramp Events of Wind Generating Resources to Enhance the Security of Smart Energy Systems," Energies, MDPI, vol. 15(7), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2676-:d:787819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2676/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2676/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dorado-Moreno, M. & Cornejo-Bueno, L. & Gutiérrez, P.A. & Prieto, L. & Hervás-Martínez, C. & Salcedo-Sanz, S., 2017. "Robust estimation of wind power ramp events with reservoir computing," Renewable Energy, Elsevier, vol. 111(C), pages 428-437.
    2. Cui, Yang & He, Yingjie & Xiong, Xiong & Chen, Zhenghong & Li, Fen & Xu, Taotao & Zhang, Fanghong, 2021. "Algorithm for identifying wind power ramp events via novel improved dynamic swinging door," Renewable Energy, Elsevier, vol. 171(C), pages 542-556.
    3. Gallego-Castillo, Cristobal & Cuerva-Tejero, Alvaro & Lopez-Garcia, Oscar, 2015. "A review on the recent history of wind power ramp forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1148-1157.
    4. Cui, Mingjian & Zhang, Jie & Feng, Cong & Florita, Anthony R. & Sun, Yuanzhang & Hodge, Bri-Mathias, 2017. "Characterizing and analyzing ramping events in wind power, solar power, load, and netload," Renewable Energy, Elsevier, vol. 111(C), pages 227-244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guglielmo D’Amico & Filippo Petroni & Salvatore Vergine, 2022. "Ramp Rate Limitation of Wind Power: An Overview," Energies, MDPI, vol. 15(16), pages 1-15, August.
    2. Hu, Jianming & Zhang, Liping & Tang, Jingwei & Liu, Zhi, 2023. "A novel transformer ordinal regression network with label diversity for wind power ramp events forecasting," Energy, Elsevier, vol. 280(C).
    3. Martín-Betancor, Moisés & Osorio, Javier & Ruíz-García, Alejandro & Nuez, Ignacio, 2024. "Technical-economic limitations of floating offshore wind energy generation in small isolated island power systems without energy storage: Case study in the Canary Islands," Energy Policy, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Joseph C.Y. & Draxl, Caroline & Berg, Larry K., 2022. "Evaluating wind speed and power forecasts for wind energy applications using an open-source and systematic validation framework," Renewable Energy, Elsevier, vol. 200(C), pages 457-475.
    2. Cui, Yang & Chen, Zhenghong & He, Yingjie & Xiong, Xiong & Li, Fen, 2023. "An algorithm for forecasting day-ahead wind power via novel long short-term memory and wind power ramp events," Energy, Elsevier, vol. 263(PC).
    3. Guglielmo D’Amico & Filippo Petroni & Salvatore Vergine, 2022. "Ramp Rate Limitation of Wind Power: An Overview," Energies, MDPI, vol. 15(16), pages 1-15, August.
    4. Cui, Yang & He, Yingjie & Xiong, Xiong & Chen, Zhenghong & Li, Fen & Xu, Taotao & Zhang, Fanghong, 2021. "Algorithm for identifying wind power ramp events via novel improved dynamic swinging door," Renewable Energy, Elsevier, vol. 171(C), pages 542-556.
    5. Laura Cornejo-Bueno & Lucas Cuadra & Silvia Jiménez-Fernández & Javier Acevedo-Rodríguez & Luis Prieto & Sancho Salcedo-Sanz, 2017. "Wind Power Ramp Events Prediction with Hybrid Machine Learning Regression Techniques and Reanalysis Data," Energies, MDPI, vol. 10(11), pages 1-27, November.
    6. Hu, Jianming & Zhang, Liping & Tang, Jingwei & Liu, Zhi, 2023. "A novel transformer ordinal regression network with label diversity for wind power ramp events forecasting," Energy, Elsevier, vol. 280(C).
    7. Keller, Victor & Lyseng, Benjamin & English, Jeffrey & Niet, Taco & Palmer-Wilson, Kevin & Moazzen, Iman & Robertson, Bryson & Wild, Peter & Rowe, Andrew, 2018. "Coal-to-biomass retrofit in Alberta –value of forest residue bioenergy in the electricity system," Renewable Energy, Elsevier, vol. 125(C), pages 373-383.
    8. António Couto & Paula Costa & Teresa Simões, 2021. "Identification of Extreme Wind Events Using a Weather Type Classification," Energies, MDPI, vol. 14(13), pages 1-16, July.
    9. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Zhang, Yi & Zhao, Zhipeng & Lu, Jia, 2022. "Wasserstein metric-based two-stage distributionally robust optimization model for optimal daily peak shaving dispatch of cascade hydroplants under renewable energy uncertainties," Energy, Elsevier, vol. 260(C).
    10. Stavros-Andreas Logothetis & Vasileios Salamalikis & Bijan Nouri & Jan Remund & Luis F. Zarzalejo & Yu Xie & Stefan Wilbert & Evangelos Ntavelis & Julien Nou & Niels Hendrikx & Lennard Visser & Manaji, 2022. "Solar Irradiance Ramp Forecasting Based on All-Sky Imagers," Energies, MDPI, vol. 15(17), pages 1-17, August.
    11. Junwei Fu & Yuna Ni & Yuming Ma & Jian Zhao & Qiuyi Yang & Shiyi Xu & Xiang Zhang & Yuhua Liu, 2023. "A Visualization-Based Ramp Event Detection Model for Wind Power Generation," Energies, MDPI, vol. 16(3), pages 1-16, January.
    12. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    13. Taylor, James W., 2017. "Probabilistic forecasting of wind power ramp events using autoregressive logit models," European Journal of Operational Research, Elsevier, vol. 259(2), pages 703-712.
    14. Zhang, Jie & Cui, Mingjian & Hodge, Bri-Mathias & Florita, Anthony & Freedman, Jeffrey, 2017. "Ramp forecasting performance from improved short-term wind power forecasting over multiple spatial and temporal scales," Energy, Elsevier, vol. 122(C), pages 528-541.
    15. Zhong, Mingwei & Xu, Cancheng & Xian, Zikang & He, Guanglin & Zhai, Yanpeng & Zhou, Yongwang & Fan, Jingmin, 2024. "DTTM: A deep temporal transfer model for ultra-short-term online wind power forecasting," Energy, Elsevier, vol. 286(C).
    16. González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Yu, Min & Niu, Dongxiao & Gao, Tian & Wang, Keke & Sun, Lijie & Li, Mingyu & Xu, Xiaomin, 2023. "A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and BiGRU optimized by the attention mechanism," Energy, Elsevier, vol. 269(C).
    18. Wang, Qin & Wu, Hongyu & Florita, Anthony R. & Brancucci Martinez-Anido, Carlo & Hodge, Bri-Mathias, 2016. "The value of improved wind power forecasting: Grid flexibility quantification, ramp capability analysis, and impacts of electricity market operation timescales," Applied Energy, Elsevier, vol. 184(C), pages 696-713.
    19. Ma, Yixiang & Yu, Lean & Zhang, Guoxing, 2022. "Short-term wind power forecasting with an intermittency-trait-driven methodology," Renewable Energy, Elsevier, vol. 198(C), pages 872-883.
    20. He, Yaoyao & Zhu, Chuang & An, Xueli, 2023. "A trend-based method for the prediction of offshore wind power ramp," Renewable Energy, Elsevier, vol. 209(C), pages 248-261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2676-:d:787819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.