IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2548-d784098.html
   My bibliography  Save this article

Predicting Adsorption of Methane and Carbon Dioxide Mixture in Shale Using Simplified Local-Density Model: Implications for Enhanced Gas Recovery and Carbon Dioxide Sequestration

Author

Listed:
  • Yu Pang

    (Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada)

  • Shengnan Chen

    (Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada)

  • Hai Wang

    (Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada)

Abstract

Carbon dioxide (CO 2 ) capture and storage have attracted global focus because CO 2 emissions are responsible for global warming. Recently, injecting CO 2 into shale gas reservoirs is regarded as a promising technique to enhance shale gas (i.e., methane (CH 4 )) production while permanently storing CO 2 underground. This study aims to develop a calculation workflow, which is built on the simplified local-density (SLD) model, to predict excess and absolute adsorption isotherms of gas mixture based on single-component adsorption data. Such a calculation workflow was validated by comparing the measured adsorption of CH 4 , CO 2 , and binary CH 4 /CO 2 mixture in shale reported previously in the literature with the predicted results using the calculation workflow. The crucial steps of the calculation workflow are applying the multicomponent SLD model to conduct regression analysis on the measured adsorption isotherm of each component in the gas mixture simultaneously and using the determined key regression parameters to predict the adsorption isotherms of gas mixtures with various feed-gas mole fractions. Through the calculation workflow, the density profiles and mole fractions of the adsorbed gases can be determined, from which the absolute adsorption of the gas mixture is estimated. In addition, the CO 2 /CH 4 adsorption selectivity larger than one is observed, illustrating the preferential adsorption of CO 2 over CH 4 on shale, which implies that CO 2 has enormous potential to enhance CH 4 production while sequestering itself in shale. Our findings demonstrate that the proposed calculation workflow depending on the multicomponent SLD model enables us to accurately predict the adsorption of gas mixtures in nanopores based on single-component adsorption results. Following the innovative calculation flow path, we could bypass the experimental difficulties of measuring the multicomponent mole fractions in the gas phase at the equilibrium during the adsorption experiments. This study also provides insight into the CO 2 /CH 4 competitive adsorption behavior in nanopores and gives guidance to CO 2 -enhanced gas recovery (CO 2 -EGR) and CO 2 sequestration in shale formations.

Suggested Citation

  • Yu Pang & Shengnan Chen & Hai Wang, 2022. "Predicting Adsorption of Methane and Carbon Dioxide Mixture in Shale Using Simplified Local-Density Model: Implications for Enhanced Gas Recovery and Carbon Dioxide Sequestration," Energies, MDPI, vol. 15(7), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2548-:d:784098
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2548/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2548/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang, Liang & Ning, Zhengfu & Wang, Qing & Zhang, Wentong & Cheng, Zhilin & Wu, Xiaojun & Qin, Huibo, 2018. "Effect of organic type and moisture on CO2/CH4 competitive adsorption in kerogen with implications for CO2 sequestration and enhanced CH4 recovery," Applied Energy, Elsevier, vol. 210(C), pages 28-43.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Shenguang & Wang, Liang & Li, Shuohao & Ni, Sijia & Cheng, Yuanping & Zhang, Xiaolei & Liu, Shimin, 2024. "Re-thinking methane storage mechanism in highly metamorphic coalbed reservoirs — A molecular simulation considering organic components," Energy, Elsevier, vol. 293(C).
    2. Lei Pan & Ling Chen & Peng Cheng & Haifeng Gai, 2022. "Methane Storage Capacity of Permian Shales with Type III Kerogen in the Lower Yangtze Area, Eastern China," Energies, MDPI, vol. 15(5), pages 1-23, March.
    3. Qin, Chao & Jiang, Yongdong & Zuo, Shuangying & Chen, Shiwan & Xiao, Siyou & Liu, Zhengjie, 2021. "Investigation of adsorption kinetics of CH4 and CO2 on shale exposure to supercritical CO2," Energy, Elsevier, vol. 236(C).
    4. Qin, Chao & Jiang, Yongdong & Zhou, Junping & Zuo, Shuangying & Chen, Shiwan & Liu, Zhengjie & Yin, Hong & Li, Ye, 2022. "Influence of supercritical CO2 exposure on water wettability of shale: Implications for CO2 sequestration and shale gas recovery," Energy, Elsevier, vol. 242(C).
    5. Yang, Xue & Chen, Zeqin & Liu, Xiaoqiang & Xue, Zhiyu & Yue, Fen & Wen, Junjie & Li, Meijun & Xue, Ying, 2022. "Correction of gas adsorption capacity in quartz nanoslit and its application in recovering shale gas resources by CO2 injection: A molecular simulation," Energy, Elsevier, vol. 240(C).
    6. Shan Yuan & Hong-Ze Gang & Yi-Fan Liu & Lei Zhou & Muhammad Irfan & Shi-Zhong Yang & Bo-Zhong Mu, 2022. "Adsorption and Diffusion Behaviors of CO 2 and CH 4 Mixtures in Different Types of Kerogens and Their Roles in Enhanced Energy Recovery," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    7. Wang, Han & Zhang, Mingshan & Xia, Xuanzhe & Tian, Zhenhua & Qin, Xiangjie & Cai, Jianchao, 2024. "Lattice Boltzmann prediction of CO2 and CH4 competitive adsorption in shale porous media accelerated by machine learning for CO2 sequestration and enhanced CH4 recovery," Applied Energy, Elsevier, vol. 370(C).
    8. Yijie Xing & Xianming Xiao & Qin Zhou & Wei Liu & Yanming Zhao, 2023. "Influence of Water on the Methane Adsorption Capacity of Organic-Rich Shales and Its Controlling Factors: A Review," Energies, MDPI, vol. 16(8), pages 1-29, April.
    9. Yansong Bai & Ziwen Li & Hongjin Yu & Hongqing Hu & Yinji Wang, 2023. "Molecular Dynamics Simulation of CH 4 Displacement through Different Sequential Injections of CO 2 /N 2," Sustainability, MDPI, vol. 15(23), pages 1-15, December.
    10. Liu, Haorui & Wang, Shuoyu & Wang, Xiaoqiong & Feng, XiaoJing & Chen, Shuixia, 2022. "A stable solid amine adsorbent with interconnected open-cell structure for rapid CO2 adsorption and CO2/CH4 separation," Energy, Elsevier, vol. 258(C).
    11. Guang, Wenfeng & Zhang, Zhenyu & Zhang, Lei & Ranjith, P.G. & Hao, Shengpeng & Liu, Xiaoqian, 2023. "Confinement effect on transport diffusivity of adsorbed CO2–CH4 mixture in coal nanopores for CO2 sequestration and enhanced CH4 recovery," Energy, Elsevier, vol. 278(PA).
    12. Wang, Tianyu & Tian, Shouceng & Li, Gensheng & Zhang, Liyuan & Sheng, Mao & Ren, Wenxi, 2021. "Molecular simulation of gas adsorption in shale nanopores: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Zhou, Guangzhao & Duan, Xianggang & Chang, Jin & Bo, Yu & Huang, Yuhan, 2023. "Investigation of CH4/CO2 competitive adsorption-desorption mechanisms for enhanced shale gas production and carbon sequestration using nuclear magnetic resonance," Energy, Elsevier, vol. 278(PB).
    14. Li, Jing & Wu, Keliu & Chen, Zhangxin & Wang, Wenyang & Yang, Bin & Wang, Kun & Luo, Jia & Yu, Renjie, 2019. "Effects of energetic heterogeneity on gas adsorption and gas storage in geologic shale systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    15. Feng, Gan & Kang, Yong & Sun, Ze-dong & Wang, Xiao-chuan & Hu, Yao-qing, 2019. "Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale," Energy, Elsevier, vol. 173(C), pages 870-882.
    16. Wang, Hui & Chen, Li & Qu, Zhiguo & Yin, Ying & Kang, Qinjun & Yu, Bo & Tao, Wen-Quan, 2020. "Modeling of multi-scale transport phenomena in shale gas production — A critical review," Applied Energy, Elsevier, vol. 262(C).
    17. Wu, Jian & Shen, Luming & Huang, Pengyu & Gan, Yixiang, 2023. "Selective adsorption and transport of CO2–CH4 mixture under nano-confinement," Energy, Elsevier, vol. 273(C).
    18. Li, Jiawei & Sun, Chenhao, 2022. "Molecular insights on competitive adsorption and enhanced displacement effects of CO2/CH4 in coal for low-carbon energy technologies," Energy, Elsevier, vol. 261(PB).
    19. Zhang, Tao & Zhang, Lei & Wang, Yongke & Qiao, Xiangyang & Feng, Dong & Zhao, Wen & Li, Xiangfang, 2020. "An integrated well-pattern optimization strategy to unlock continental tight gas reservoir in China," Energy, Elsevier, vol. 209(C).
    20. Gao, Changjing & Liu, Dameng & Vandeginste, Veerle & Cai, Yidong & Sun, Fengrui, 2023. "Thermodynamic energy change and occurrence mechanism of multiple fluids in coal reservoirs," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2548-:d:784098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.