IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2435-d779911.html
   My bibliography  Save this article

Planning of New Distribution Network Considering Green Power Certificate Trading and Carbon Emissions Trading

Author

Listed:
  • Hujun Wang

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Xiaodong Shen

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Junyong Liu

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

Abstract

In order to adapt to the development of the green power certificate trading (GPCT) and carbon emissions trading (CET) market, reduce the carbon emissions of the distribution network and increase the investment income, this paper proposes a new distribution network (NDN) planning and simulation operation bi-layer model with new energy (NE) as the main body, considering the GPCT and CET mechanisms. First, the upper layer determines the capacity and location of wind turbine (WT), photovoltaic (PV), hydraulic turbine (HT), micro turbine (MT), and energy storage (ES), while the lower simulation operation considers the operation costs of WT, PV, HT, MT, ES, load demand response (DR) and carbon emissions. The planning objective was to minimize the total cost of investment, operation and carbon emissions in the planning period. Then, on the basis of a traditional distribution network (TDN), security constraints, carbon emissions intensity, GPCT volume and CET volume were added. Finally, the cases study of the improved IEEE33 node and PG&E69 node NDN planning were provided. The results of NDN planning and TDN planning are compared and analyzed, and a sensitivity analysis was carried out to study the impact of GPCT and CET mechanisms with different price levels on investment planning. The results verify the applicability and rationality of the model.

Suggested Citation

  • Hujun Wang & Xiaodong Shen & Junyong Liu, 2022. "Planning of New Distribution Network Considering Green Power Certificate Trading and Carbon Emissions Trading," Energies, MDPI, vol. 15(7), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2435-:d:779911
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2435/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2435/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiang, Yue & Cai, Hanhu & Gu, Chenghong & Shen, Xiaodong, 2020. "Cost-benefit analysis of integrated energy system planning considering demand response," Energy, Elsevier, vol. 192(C).
    2. Perdan, Slobodan & Azapagic, Adisa, 2011. "Carbon trading: Current schemes and future developments," Energy Policy, Elsevier, vol. 39(10), pages 6040-6054, October.
    3. Bartolini, Andrea & Mazzoni, Stefano & Comodi, Gabriele & Romagnoli, Alessandro, 2021. "Impact of carbon pricing on distributed energy systems planning," Applied Energy, Elsevier, vol. 301(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yudong Tan & Guosheng Xie & Yunhao Xiao & Yi Luo & Xintao Xie & Ming Wen, 2022. "Comprehensive Benefit Evaluation of Hybrid Pumped-Storage Power Stations Based on Improved Rank Correlation-Entropy Weight Method," Energies, MDPI, vol. 15(22), pages 1-17, November.
    2. Yixin Huang & Lei Zhao & Weiqiang Qiu & Yuhang Xu & Junyan Gao & Youxiang Yan & Tong Wu & Zhenzhi Lin, 2022. "Evaluation of Acceptance Capacity of Distributed Generation in Distribution Network Considering Carbon Emission," Energies, MDPI, vol. 15(12), pages 1-15, June.
    3. Meng, Yuxiang & Ma, Gang & Yao, Yunting & Li, Hao, 2024. "Nash bargaining based integrated energy agent optimal operation strategy considering negotiation pricing for tradable green certificate," Applied Energy, Elsevier, vol. 356(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caiado, Nathália & Guarnieri, Patricia & Xavier, Lúcia Helena & de Lorena Diniz Chaves, Gisele, 2017. "A characterization of the Brazilian market of reverse logistic credits (RLC) and an analogy with the existing carbon credit market," Resources, Conservation & Recycling, Elsevier, vol. 118(C), pages 47-59.
    2. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    3. Liuwei, Zhao & Shuai, Jin & Hongyun, Jiang, 2024. "Complex dynamics of dual oligopoly demand uncertainty under carbon emission trading mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    4. Wu, Xiao & Yang, Lihua & Zheng, Bingle, 2024. "Joint capacity configuration and demand response optimization of integrated energy system considering economic and dynamic control performance," Energy, Elsevier, vol. 301(C).
    5. Yushi Wang & Beining Hu & Xianhai Meng & Runjin Xiao, 2024. "A Comprehensive Review on Technologies for Achieving Zero-Energy Buildings," Sustainability, MDPI, vol. 16(24), pages 1-26, December.
    6. repec:spo:wpmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    7. Hou, Langbo & Tong, Xi & Chen, Heng & Fan, Lanxin & Liu, Tao & Liu, Wenyi & Liu, Tong, 2024. "Optimized scheduling of smart community energy systems considering demand response and shared energy storage," Energy, Elsevier, vol. 295(C).
    8. Pivetta, Davide & Tafone, Alessio & Mazzoni, Stefano & Romagnoli, Alessandro & Taccani, Rodolfo, 2024. "A multi-objective planning tool for the optimal supply of green hydrogen for an industrial port area decarbonization," Renewable Energy, Elsevier, vol. 232(C).
    9. Hu, Guangyu & Rong, Ke & Shi, Yongjiang & Yu, Jing, 2014. "Sustaining the emerging carbon trading industry development: A business ecosystem approach of carbon traders," Energy Policy, Elsevier, vol. 73(C), pages 587-597.
    10. Jiang, Jing Jing & Ye, Bin & Ma, Xiao Ming, 2014. "The construction of Shenzhen׳s carbon emission trading scheme," Energy Policy, Elsevier, vol. 75(C), pages 17-21.
    11. Jiang, Meihui & Xu, Zhenjiang & Zhu, Hongyu & Hwang Goh, Hui & Agustiono Kurniawan, Tonni & Liu, Tianhao & Zhang, Dongdong, 2024. "Integrated demand response modeling and optimization technologies supporting energy internet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    12. Liang, Ziwen & Mu, Longhua, 2024. "Multi-agent low-carbon optimal dispatch of regional integrated energy system based on mixed game theory," Energy, Elsevier, vol. 295(C).
    13. Ryan, Erich & McDaniel, Benjamin & Kosanovic, Dragoljub, 2022. "Application of thermal energy storage with electrified heating and cooling in a cold climate," Applied Energy, Elsevier, vol. 328(C).
    14. Li, Ke & Ye, Ning & Li, Shuzhen & Wang, Haiyang & Zhang, Chenghui, 2023. "Distributed collaborative operation strategies in multi-agent integrated energy system considering integrated demand response based on game theory," Energy, Elsevier, vol. 273(C).
    15. Dezhou Kong & Jianru Jing & Tingyue Gu & Xuanyue Wei & Xingning Sa & Yimin Yang & Zhiang Zhang, 2023. "Theoretical Analysis of Integrated Community Energy Systems (ICES) Considering Integrated Demand Response (IDR): A Review of the System Modelling and Optimization," Energies, MDPI, vol. 16(10), pages 1-22, May.
    16. Cuicui Feng & Guanqiong Ye & Jiangning Zeng & Jian Zeng & Qutu Jiang & Liuyue He & Yaowen Zhang & Zhenci Xu, 2023. "Sustainably developing global blue carbon for climate change mitigation and economic benefits through international cooperation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Shoufeng Ji & Qi Sun, 2017. "Low-Carbon Planning and Design in B&R Logistics Service: A Case Study of an E-Commerce Big Data Platform in China," Sustainability, MDPI, vol. 9(11), pages 1-27, November.
    18. Yang, Xiaohui & Chen, Zaixing & Huang, Xin & Li, Ruixin & Xu, Shaoping & Yang, Chunsheng, 2021. "Robust capacity optimization methods for integrated energy systems considering demand response and thermal comfort," Energy, Elsevier, vol. 221(C).
    19. Zhang, Yongji & Lan, Minghui & Zhao, Yapu & Su, Zhi & Hao, Yu & Du, Heran, 2024. "Regional carbon emission pressure and corporate green innovation," Applied Energy, Elsevier, vol. 360(C).
    20. Yifei Hua & Feng Dong, 2019. "China’s Carbon Market Development and Carbon Market Connection: A Literature Review," Energies, MDPI, vol. 12(9), pages 1-25, May.
    21. Wang, Fengjuan & Xu, Jiuping & Liu, Liying & Yin, Guangming & Wang, Jianhua & Yan, Jinyue, 2021. "Optimal design and operation of hybrid renewable energy system for drinking water treatment," Energy, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2435-:d:779911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.