IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2210-d773687.html
   My bibliography  Save this article

Effects of Colloid Milling and Hot-Water Pretreatment on Physical Properties and Enzymatic Digestibility of Oak Wood

Author

Listed:
  • Tae Hoon Kim

    (R&D Center, SugarEn Co., Ltd., Yongin 16890, Gyeonggi-do, Korea
    Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Gyeonggi-do, Korea)

  • Seung Hyeon Park

    (Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Gyeonggi-do, Korea)

  • Tin Diep Trung Le

    (Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Gyeonggi-do, Korea)

  • Tae Hyun Kim

    (Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Gyeonggi-do, Korea)

  • Kyeong Keun Oh

    (R&D Center, SugarEn Co., Ltd., Yongin 16890, Gyeonggi-do, Korea
    Department of Chemical Engineering, Dankook University, Yongin 16890, Gyeonggi-do, Korea)

Abstract

A two-step process using colloid milling (CM) and hot water (HW) treatment was evaluated for its ability to improve xylose recovery and the enzymatic digestibility of oak wood. In the first step, CM pretreatment was applied at a milling (feeding) speed of 100 mL/min with four different milling times (3, 6, 9, and 12 h), and the enzymatic digestibility and physical properties of each substrate were measured. In the second-step, the HW pretreatment was applied to enhance the enzymatic digestibility and xylan recovery at various reaction severities ( Log R 0 ) from 2.07 to 4.43 using 12 h colloid-milled (CM-treated) oak wood. Compared with untreated oak wood, CM not only significantly disrupted the structure of oak wood but also increased its Brunauer–Emmett–Teller surface area (42-fold) and pore volume (28-fold). The crystallinity of two-step-treated oak wood was decreased to 34.8, while the enzymatic digestibility of 12 h CM-treated oak wood was increased to 58.1% at enzyme loading of 30 filter paper units (FPU)/g glucan for 96 h. After HW treatment of CM-treated oak wood at Log R 0 = 3.83, 80.7% of xylan recovery yield and 91.1% of enzymatic digestibility (with 15 FPU/g glucan at 96 h) was obtained, which was 84.2% higher than the enzymatic digestibility of untreated oak wood (6.9%).

Suggested Citation

  • Tae Hoon Kim & Seung Hyeon Park & Tin Diep Trung Le & Tae Hyun Kim & Kyeong Keun Oh, 2022. "Effects of Colloid Milling and Hot-Water Pretreatment on Physical Properties and Enzymatic Digestibility of Oak Wood," Energies, MDPI, vol. 15(6), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2210-:d:773687
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2210/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2210/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zabed, H. & Sahu, J.N. & Boyce, A.N. & Faruq, G., 2016. "Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 751-774.
    2. Alayoubi, Ranim & Mehmood, Nasir & Husson, Eric & Kouzayha, Achraf & Tabcheh, Mohamad & Chaveriat, Ludovic & Sarazin, Catherine & Gosselin, Isabelle, 2020. "Low temperature ionic liquid pretreatment of lignocellulosic biomass to enhance bioethanol yield," Renewable Energy, Elsevier, vol. 145(C), pages 1808-1816.
    3. Binod, Parameswaran & Satyanagalakshmi, Karri & Sindhu, Raveendran & Janu, Kanakambaran Usha & Sukumaran, Rajeev K. & Pandey, Ashok, 2012. "Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse," Renewable Energy, Elsevier, vol. 37(1), pages 109-116.
    4. Yu, Qiang & Zhuang, Xinshu & Yuan, Zhenhong & Wang, Wen & Qi, Wei & Wang, Qiong & Tan, Xuesong, 2011. "Step-change flow rate liquid hot water pretreatment of sweet sorghum bagasse for enhancement of total sugars recovery," Applied Energy, Elsevier, vol. 88(7), pages 2472-2479, July.
    5. Kim, Tae Hoon & Kim, Tae Hyun, 2014. "Overview of technical barriers and implementation of cellulosic ethanol in the U.S," Energy, Elsevier, vol. 66(C), pages 13-19.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tae Hoon Kim & Dongjoong Im & Kyeong Keun Oh & Tae Hyun Kim, 2018. "Effects of Organosolv Pretreatment Using Temperature-Controlled Bench-Scale Ball Milling on Enzymatic Saccharification of Miscanthus × giganteus," Energies, MDPI, vol. 11(10), pages 1-13, October.
    2. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    3. Tae Hoon Kim & Hyun Kwak & Tae Hyun Kim & Kyeong Keun Oh, 2021. "Reaction Characteristics of Organosolv-Fractionation Process for Selective Extraction of Carbohydrates and Lignin from Rice Husks," Energies, MDPI, vol. 14(3), pages 1-14, January.
    4. Lai, Long Wee & Idris, Ani, 2016. "Comparison of steam-alkali-chemical and microwave-alkali pretreatment for enhancing the enzymatic saccharification of oil palm trunk," Renewable Energy, Elsevier, vol. 99(C), pages 738-746.
    5. Ko, Ja Kyong & Lee, Jae Hoon & Jung, Je Hyeong & Lee, Sun-Mi, 2020. "Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Mariana S. T. Amândio & Joana M. Pereira & Jorge M. S. Rocha & Luísa S. Serafim & Ana M. R. B. Xavier, 2022. "Getting Value from Pulp and Paper Industry Wastes: On the Way to Sustainability and Circular Economy," Energies, MDPI, vol. 15(11), pages 1-31, June.
    7. Gomes, Michelle Garcia & Gurgel, Leandro Vinícius Alves & Baffi, Milla Alves & Pasquini, Daniel, 2020. "Pretreatment of sugarcane bagasse using citric acid and its use in enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 157(C), pages 332-341.
    8. Jiří Jaromír Klemeš & Petar Sabev Varbanov & Paweł Ocłoń & Hon Huin Chin, 2019. "Towards Efficient and Clean Process Integration: Utilisation of Renewable Resources and Energy-Saving Technologies," Energies, MDPI, vol. 12(21), pages 1-32, October.
    9. Battista, Federico & Mancini, Giuseppe & Ruggeri, Bernardo & Fino, Debora, 2016. "Selection of the best pretreatment for hydrogen and bioethanol production from olive oil waste products," Renewable Energy, Elsevier, vol. 88(C), pages 401-407.
    10. Aghili Mehrizi, Amirreza & Tangestaninejad, Shahram & Denayer, Joeri F.M. & Karimi, Keikhosro & Shafiei, Marzieh, 2023. "The critical impacts of anion and cosolvent on morpholinium ionic liquid pretreatment for efficient renewable energy production from triticale straw," Renewable Energy, Elsevier, vol. 202(C), pages 686-698.
    11. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    12. Yang, Jinhang & Wang, Xin & Shen, Boxiong & Hu, Zhenzhong & Xu, Lianfei & Yang, Shuo, 2020. "Lignin from energy plant (Arundo donax): Pyrolysis kinetics, mechanism and pathway evaluation," Renewable Energy, Elsevier, vol. 161(C), pages 963-971.
    13. Patange, Omkar S. & Garg, Amit & Jayaswal, Sachin, 2022. "An integrated bottom-up optimization to investigate the role of BECCS in transitioning towards a net-zero energy system: A case study from Gujarat, India," Energy, Elsevier, vol. 255(C).
    14. Michał Wojcieszyk & Lotta Knuutila & Yuri Kroyan & Mário de Pinto Balsemão & Rupali Tripathi & Juha Keskivali & Anna Karvo & Annukka Santasalo-Aarnio & Otto Blomstedt & Martti Larmi, 2021. "Performance of Anisole and Isobutanol as Gasoline Bio-Blendstocks for Spark Ignition Engines," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    15. Nayak, Abhishek & Pulidindi, Indra Neel & Rao, Chinta Sankar, 2020. "Novel strategies for glucose production from biomass using heteropoly acid catalyst," Renewable Energy, Elsevier, vol. 159(C), pages 215-220.
    16. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    17. Ghosh, Shiladitya & Chowdhury, Ranjana & Bhattacharya, Pinaki, 2017. "Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes," Applied Energy, Elsevier, vol. 198(C), pages 284-298.
    18. Rita H. R. Branco & Mariana S. T. Amândio & Luísa S. Serafim & Ana M. R. B. Xavier, 2020. "Ethanol Production from Hydrolyzed Kraft Pulp by Mono- and Co-Cultures of Yeasts: The Challenge of C6 and C5 Sugars Consumption," Energies, MDPI, vol. 13(3), pages 1-15, February.
    19. Kumar, Vinod & Nanda, Manisha & Joshi, H.C. & Singh, Ajay & Sharma, Sonal & Verma, Monu, 2018. "Production of biodiesel and bioethanol using algal biomass harvested from fresh water river," Renewable Energy, Elsevier, vol. 116(PA), pages 606-612.
    20. Dutta, Sajal Kanti & Halder, Gopinath & Mandal, Mrinal Kanti, 2014. "Modeling and optimization of bi-directional delignification of rice straw for production of bio-fuel feedstock using central composite design approach," Energy, Elsevier, vol. 71(C), pages 579-587.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2210-:d:773687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.