IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2121-d770849.html
   My bibliography  Save this article

A Distributed Ledger-Based Automated Marketplace for the Decentralized Trading of Renewable Energy in Smart Grids

Author

Listed:
  • Dušan B. Gajić

    (Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia)

  • Veljko B. Petrović

    (Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia)

  • Nebojša Horvat

    (Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia)

  • Dinu Dragan

    (Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia)

  • Aleksandar Stanisavljević

    (Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia)

  • Vladimir Katić

    (Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia)

  • Jelena Popović

    (Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, 7522 NH Enschede, The Netherlands)

Abstract

We present a prototype of a decentralized power trading system based on the use of distributed ledger technology. This sort of efficient, decentralized marketplace is needed to empower prosumers and make them first-class members of a smart, decentralized power grid in order to drive further renewable energy adoption. Unlike the bulk of previous work in this field, we focus on private permissioned distributed ledgers rather than conventional blockchains. The proposed solution is entirely independent of cryptocurrency, with an explicit design capability of being adapted piecemeal without any fundamental changes to the present regulatory environment. To be economical, efficient, and scalable, our prototype is based on a lean, Corda-based private permissioned distributed ledger. It allows for instant, automatic bidding on and trading of ‘power promises’ and the robust implementation of short-term, small-scale liquid electrical power futures. We demonstrate that the prototype performs well and presents several clear advantages over existing solutions based on conventional blockchains. Therefore, the proposed approach represents a promising, robust solution to the smart grid decentralized power trading problem.

Suggested Citation

  • Dušan B. Gajić & Veljko B. Petrović & Nebojša Horvat & Dinu Dragan & Aleksandar Stanisavljević & Vladimir Katić & Jelena Popović, 2022. "A Distributed Ledger-Based Automated Marketplace for the Decentralized Trading of Renewable Energy in Smart Grids," Energies, MDPI, vol. 15(6), pages 1-26, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2121-:d:770849
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2121/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2121/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mengelkamp, Esther & Gärttner, Johannes & Rock, Kerstin & Kessler, Scott & Orsini, Lawrence & Weinhardt, Christof, 2018. "Designing microgrid energy markets," Applied Energy, Elsevier, vol. 210(C), pages 870-880.
    2. Andoni, Merlinda & Robu, Valentin & Flynn, David & Abram, Simone & Geach, Dale & Jenkins, David & McCallum, Peter & Peacock, Andrew, 2019. "Blockchain technology in the energy sector: A systematic review of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 143-174.
    3. Evangelos K. Markakis & Yannis Nikoloudakis & Kalliopi Lapidaki & Konstantinos Fiorentzis & Emmanuel Karapidakis, 2021. "Unification of Edge Energy Grids for Empowering Small Energy Producers," Sustainability, MDPI, vol. 13(15), pages 1-9, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quy Nguyen Minh & Van-Hau Nguyen & Vu Khanh Quy & Le Anh Ngoc & Abdellah Chehri & Gwanggil Jeon, 2022. "Edge Computing for IoT-Enabled Smart Grid: The Future of Energy," Energies, MDPI, vol. 15(17), pages 1-16, August.
    2. Yaçine Merrad & Mohamed Hadi Habaebi & Siti Fauziah Toha & Md. Rafiqul Islam & Teddy Surya Gunawan & Mokhtaria Mesri, 2022. "Fully Decentralized, Cost-Effective Energy Demand Response Management System with a Smart Contracts-Based Optimal Power Flow Solution for Smart Grids," Energies, MDPI, vol. 15(12), pages 1-27, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Vaccargiu & Andrea Pinna & Roberto Tonelli & Luisanna Cocco, 2023. "Blockchain in the Energy Sector for SDG Achievement," Sustainability, MDPI, vol. 15(20), pages 1-23, October.
    2. Guo, Qiaozhen & He, Qiao-Chu & Chen, Ying-Ju & Huang, Wei, 2021. "Poverty mitigation via solar panel adoption: Smart contracts and targeted subsidy design," Omega, Elsevier, vol. 102(C).
    3. Ahl, A. & Yarime, M. & Goto, M. & Chopra, Shauhrat S. & Kumar, Nallapaneni Manoj. & Tanaka, K. & Sagawa, D., 2020. "Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    4. Yahia Baashar & Gamal Alkawsi & Ammar Ahmed Alkahtani & Wahidah Hashim & Rina Azlin Razali & Sieh Kiong Tiong, 2021. "Toward Blockchain Technology in the Energy Environment," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    5. Koasidis, Konstantinos & Marinakis, Vangelis & Nikas, Alexandros & Chira, Katerina & Flamos, Alexandros & Doukas, Haris, 2022. "Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece," Energy Policy, Elsevier, vol. 161(C).
    6. Akhil Joseph & Patil Balachandra, 2020. "Energy Internet, the Future Electricity System: Overview, Concept, Model Structure, and Mechanism," Energies, MDPI, vol. 13(16), pages 1-26, August.
    7. Soto, Esteban A. & Bosman, Lisa B. & Wollega, Ebisa & Leon-Salas, Walter D., 2021. "Peer-to-peer energy trading: A review of the literature," Applied Energy, Elsevier, vol. 283(C).
    8. Peter O’Donovan & Dominic T. J. O’Sullivan, 2019. "A Systematic Analysis of Real-World Energy Blockchain Initiatives," Future Internet, MDPI, vol. 11(8), pages 1-14, August.
    9. Bischi, Aldo & Basile, Mariano & Poli, Davide & Vallati, Carlo & Miliani, Francesco & Caposciutti, Gianluca & Marracci, Mirko & Dini, Gianluca & Desideri, Umberto, 2021. "Enabling low-voltage, peer-to-peer, quasi-real-time electricity markets through consortium blockchains," Applied Energy, Elsevier, vol. 288(C).
    10. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    11. Kouhizadeh, Mahtab & Saberi, Sara & Sarkis, Joseph, 2021. "Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers," International Journal of Production Economics, Elsevier, vol. 231(C).
    12. Tseng, Fang-Mei & Palma Gil, Eunice Ina N. & Lu, Louis Y.Y., 2021. "Developmental trajectories of blockchain research and its major subfields," Technology in Society, Elsevier, vol. 66(C).
    13. Yildizbasi, Abdullah, 2021. "Blockchain and renewable energy: Integration challenges in circular economy era," Renewable Energy, Elsevier, vol. 176(C), pages 183-197.
    14. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    15. Wenting Zhao & Jun Lv & Xilong Yao & Juanjuan Zhao & Zhixin Jin & Yan Qiang & Zheng Che & Chunwu Wei, 2019. "Consortium Blockchain-Based Microgrid Market Transaction Research," Energies, MDPI, vol. 12(20), pages 1-22, October.
    16. Zhenya Ji & Zishan Guo & Hao Li & Qi Wang, 2021. "Automated Scheduling Approach under Smart Contract for Remote Wind Farms with Power-to-Gas Systems in Multiple Energy Markets," Energies, MDPI, vol. 14(20), pages 1-17, October.
    17. Milad Afzalan & Farrokh Jazizadeh, 2021. "Quantification of Demand-Supply Balancing Capacity among Prosumers and Consumers: Community Self-Sufficiency Assessment for Energy Trading," Energies, MDPI, vol. 14(14), pages 1-21, July.
    18. Siripha Junlakarn & Phimsupha Kokchang & Kulyos Audomvongseree, 2022. "Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand," Energies, MDPI, vol. 15(3), pages 1-25, February.
    19. Di Silvestre, Maria Luisa & Ippolito, Mariano Giuseppe & Sanseverino, Eleonora Riva & Sciumè, Giuseppe & Vasile, Antony, 2021. "Energy self-consumers and renewable energy communities in Italy: New actors of the electric power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    20. Zhou, Yue & Wu, Jianzhong & Song, Guanyu & Long, Chao, 2020. "Framework design and optimal bidding strategy for ancillary service provision from a peer-to-peer energy trading community," Applied Energy, Elsevier, vol. 278(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2121-:d:770849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.