IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2006-d767571.html
   My bibliography  Save this article

Authentication and Resource Allocation Strategies during Handoff for 5G IoVs Using Deep Learning

Author

Listed:
  • Hemavathi

    (Department of Electronics and Communication Engineering, B.M.S. College of Engineering, Bengaluru 560019, India)

  • Sreenatha Reddy Akhila

    (Department of Electronics and Communication Engineering, B.M.S. College of Engineering, Bengaluru 560019, India)

  • Youseef Alotaibi

    (Department of Computer Science, College of Computer and Information Systems, Umm Al-Qura University, Makkah 21955, Saudi Arabia)

  • Osamah Ibrahim Khalaf

    (Al-Nahrain Nanorenewable Energy Research Center, Al-Nahrain University, Baghdad 10001, Iraq)

  • Saleh Alghamdi

    (Department of Information Technology, College of Computers and Information Technology, Taif University, Taif 21944, Saudi Arabia)

Abstract

One of the most sought-after applications of cellular technology is transforming a vehicle into a device that can connect with the outside world, similar to smartphones. This connectivity is changing the automotive world. With the speedy growth and densification of vehicles in Internet of Vehicles (IoV) technology, the need for consistency in communication amongst vehicles becomes more significant. This technology needs to be scalable, secure, and flexible when connecting products and services. 5G technology, with its incredible speed, is expected to power the future of vehicular networks. Owing to high mobility and constant change in the topology, cooperative intelligent transport systems ensure real time connectivity between vehicles. For ensuring a seamless connectivity amongst the entities in vehicular networks, a significant alternative to design is support of handoff. This paper proposes a scheme for the best Road Side Unit (RSU) selection during handoff. Authentication and security of the vehicles are ensured using the Deep Sparse Stacked Autoencoder Network (DS2AN) algorithm, developed using a deep learning model. Once authenticated, resource allocation by RSU to the vehicle is accomplished through Deep-Q learning (DQL) techniques. Compared with the existing handoff schemes, Reinforcement Learning based on the MDP (RL-MDP) has been found to have a 13% lesser decision delay for selecting the best RSU. A higher level of security and minimum time requirement for authentication is achieved using DS2AN. The proposed system simulation results demonstrate that it ensures reliable packet delivery, significantly improving system throughput, upholding tolerable delay levels during a change of RSUs.

Suggested Citation

  • Hemavathi & Sreenatha Reddy Akhila & Youseef Alotaibi & Osamah Ibrahim Khalaf & Saleh Alghamdi, 2022. "Authentication and Resource Allocation Strategies during Handoff for 5G IoVs Using Deep Learning," Energies, MDPI, vol. 15(6), pages 1-27, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2006-:d:767571
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2006/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2006/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Salil Bharany & Sandeep Sharma & Sumit Badotra & Osamah Ibrahim Khalaf & Youseef Alotaibi & Saleh Alghamdi & Fawaz Alassery, 2021. "Energy-Efficient Clustering Scheme for Flying Ad-Hoc Networks Using an Optimized LEACH Protocol," Energies, MDPI, vol. 14(19), pages 1-20, September.
    2. Satheeshkumar Palanisamy & Balakumaran Thangaraju & Osamah Ibrahim Khalaf & Youseef Alotaibi & Saleh Alghamdi & Fawaz Alassery, 2021. "A Novel Approach of Design and Analysis of a Hexagonal Fractal Antenna Array (HFAA) for Next-Generation Wireless Communication," Energies, MDPI, vol. 14(19), pages 1-18, September.
    3. Haruna Chiroma & Shafi’i M. Abdulhamid & Ibrahim A. T. Hashem & Kayode S. Adewole & Absalom E. Ezugwu & Saidu Abubakar & Liyana Shuib, 2021. "Deep Learning-Based Big Data Analytics for Internet of Vehicles: Taxonomy, Challenges, and Research Directions," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-20, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariusz Kostrzewski & Magdalena Marczewska & Lorna Uden, 2023. "The Internet of Vehicles and Sustainability—Reflections on Environmental, Social, and Corporate Governance," Energies, MDPI, vol. 16(7), pages 1-20, April.
    2. Kuruva Lakshmanna & Neelakandan Subramani & Youseef Alotaibi & Saleh Alghamdi & Osamah Ibrahim Khalafand & Ashok Kumar Nanda, 2022. "Improved Metaheuristic-Driven Energy-Aware Cluster-Based Routing Scheme for IoT-Assisted Wireless Sensor Networks," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    3. Salil Bharany & Sandeep Sharma & Osamah Ibrahim Khalaf & Ghaida Muttashar Abdulsahib & Abeer S. Al Humaimeedy & Theyazn H. H. Aldhyani & Mashael Maashi & Hasan Alkahtani, 2022. "A Systematic Survey on Energy-Efficient Techniques in Sustainable Cloud Computing," Sustainability, MDPI, vol. 14(10), pages 1-89, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuruva Lakshmanna & Neelakandan Subramani & Youseef Alotaibi & Saleh Alghamdi & Osamah Ibrahim Khalafand & Ashok Kumar Nanda, 2022. "Improved Metaheuristic-Driven Energy-Aware Cluster-Based Routing Scheme for IoT-Assisted Wireless Sensor Networks," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    2. Akashdeep Bhardwaj & Keshav Kaushik & Mashael S. Maashi & Mohammed Aljebreen & Salil Bharany, 2022. "Alternate Data Stream Attack Framework to Perform Stealth Attacks on Active Directory Hosts," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    3. Mohammed I. Alghamdi, 2022. "Optimization of Load Balancing and Task Scheduling in Cloud Computing Environments Using Artificial Neural Networks-Based Binary Particle Swarm Optimization (BPSO)," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    4. Keshav Kaushik & Akashdeep Bhardwaj & Salil Bharany & Naif Alsharabi & Ateeq Ur Rehman & Elsayed Tag Eldin & Nivin A. Ghamry, 2022. "A Machine Learning-Based Framework for the Prediction of Cervical Cancer Risk in Women," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    5. Salil Bharany & Sandeep Sharma & Osamah Ibrahim Khalaf & Ghaida Muttashar Abdulsahib & Abeer S. Al Humaimeedy & Theyazn H. H. Aldhyani & Mashael Maashi & Hasan Alkahtani, 2022. "A Systematic Survey on Energy-Efficient Techniques in Sustainable Cloud Computing," Sustainability, MDPI, vol. 14(10), pages 1-89, May.
    6. Satheeshkumar Palanisamy & Balakumaran Thangaraju & Osamah Ibrahim Khalaf & Youseef Alotaibi & Saleh Alghamdi & Fawaz Alassery, 2021. "A Novel Approach of Design and Analysis of a Hexagonal Fractal Antenna Array (HFAA) for Next-Generation Wireless Communication," Energies, MDPI, vol. 14(19), pages 1-18, September.
    7. Salil Bharany & Sandeep Sharma & Surbhi Bhatia & Mohammad Khalid Imam Rahmani & Mohammed Shuaib & Saima Anwar Lashari, 2022. "Energy Efficient Clustering Protocol for FANETS Using Moth Flame Optimization," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    8. Manreet Sohal & Salil Bharany & Sandeep Sharma & Mashael S. Maashi & Mohammed Aljebreen, 2022. "A Hybrid Multi-Cloud Framework Using the IBBE Key Management System for Securing Data Storage," Sustainability, MDPI, vol. 14(20), pages 1-24, October.
    9. Amit Sundas & Sumit Badotra & Salil Bharany & Ahmad Almogren & Elsayed M. Tag-ElDin & Ateeq Ur Rehman, 2022. "HealthGuard: An Intelligent Healthcare System Security Framework Based on Machine Learning," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    10. Mudassir Khan & A. Ilavendhan & C. Nelson Kennedy Babu & Vishal Jain & S. B. Goyal & Chaman Verma & Calin Ovidiu Safirescu & Traian Candin Mihaltan, 2022. "Clustering Based Optimal Cluster Head Selection Using Bio-Inspired Neural Network in Energy Optimization of 6LowPAN," Energies, MDPI, vol. 15(13), pages 1-14, June.
    11. Yanzhi Zhao & Mingsi Zhao & Fengyu Shi, 2024. "Integrating Moral Education and Educational Information Technology: A Strategic Approach to Enhance Rural Teacher Training in Universities," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 15053-15093, September.
    12. Edeh Michael Onyema & M. Anand Kumar & Sundaravadivazhagn Balasubaramanian & Salil Bharany & Ateeq Ur Rehman & Elsayed Tag Eldin & Muhammad Shafiq, 2022. "A Security Policy Protocol for Detection and Prevention of Internet Control Message Protocol Attacks in Software Defined Networks," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    13. Mohammed Shuaib & Sumit Badotra & Muhammad Irfan Khalid & Abeer D. Algarni & Syed Sajid Ullah & Sami Bourouis & Jawaid Iqbal & Salil Bharany & Lokesh Gundaboina, 2022. "A Novel Optimization for GPU Mining Using Overclocking and Undervolting," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    14. Supreet Kaur & Sandeep Sharma & Ateeq Ur Rehman & Elsayed Tag Eldin & Nivin A. Ghamry & Muhammad Shafiq & Salil Bharany, 2022. "Predicting Infection Positivity, Risk Estimation, and Disease Prognosis in Dengue Infected Patients by ML Expert System," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    15. Shailendra Pratap Singh & Youseef Alotaibi & Gyanendra Kumar & Sur Singh Rawat, 2022. "Intelligent Adaptive Optimisation Method for Enhancement of Information Security in IoT-Enabled Environments," Sustainability, MDPI, vol. 14(20), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2006-:d:767571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.