IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1942-d765905.html
   My bibliography  Save this article

Multi-Objective Optimal Integration of Solar Heating and Heat Storage into Existing Fossil Fuel-Based Heat and Power Production Systems

Author

Listed:
  • Guangxuan Wang

    (Thermo and Fluid Dynamics (FLOW), Faculty of Engineering, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
    Brussels Institute for Thermal-Fluid Systems and Clean Energy (BRITE), Vrije Universiteit Brussel (VUB) and Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium)

  • Julien Blondeau

    (Thermo and Fluid Dynamics (FLOW), Faculty of Engineering, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
    Brussels Institute for Thermal-Fluid Systems and Clean Energy (BRITE), Vrije Universiteit Brussel (VUB) and Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium)

Abstract

Increasing the share of Renewable energy sources in District Heating (DH) systems is of great importance to mitigate their CO 2 emissions. The combined integration of Solar Thermal Collectors (STC) and Thermal Energy Storage (TES) into existing Combined Heat and Power (CHP) systems can be a very cost-effective way to do so. This paper aims at finding the optimal design of STC and TES systems integrated in existing CHP’s considering two distinct objectives: economic profitability and environmental impact. To do so, we developed a three-stage framework based on Pareto-optimal solutions generated by multi-objective optimization, a Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)-entropy method to select the optimal solution, followed by the definition of final Operation strategy. We proposed relevant improvement of the state-of-the-art models used in similar analysis. We also applied the proposed methodology to the case of a representative, 12 MW th CHP plant. Our results show that, while the addition of TES or STC alone results in limited performances and/or higher costs, both the cost and the CO 2 emissions can be reduced by integrating the optimal combination of STC and TES. For the selected, optimal solution, carbon emissions are reduced by 10%, while the Annual Total Cost ( ATC ) is reduced by 3%. It also improves the operational flexibility and the efficiency by peak load shaving, load valley filling and thus by decreasing the peak load boiler operation. Compared to the addition of STC alone, the use of TES results in an increased efficiency, from 88% to 92%. The optimal share of STC is then increased from 7% to 10%.

Suggested Citation

  • Guangxuan Wang & Julien Blondeau, 2022. "Multi-Objective Optimal Integration of Solar Heating and Heat Storage into Existing Fossil Fuel-Based Heat and Power Production Systems," Energies, MDPI, vol. 15(5), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1942-:d:765905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1942/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1942/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Verbruggen, Aviel & Dewallef, Pierre & Quoilin, Sylvain & Wiggin, Michael, 2013. "Unveiling the mystery of Combined Heat & Power (cogeneration)," Energy, Elsevier, vol. 61(C), pages 575-582.
    2. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2016. "Optimising urban energy systems: Simultaneous system sizing, operation and district heating network layout," Energy, Elsevier, vol. 116(P1), pages 619-636.
    3. Lin Ding & Zhenfeng Shao & Hanchao Zhang & Cong Xu & Dewen Wu, 2016. "A Comprehensive Evaluation of Urban Sustainable Development in China Based on the TOPSIS-Entropy Method," Sustainability, MDPI, vol. 8(8), pages 1-23, August.
    4. Ren, Hongbo & Zhou, Weisheng & Nakagami, Ken'ichi & Gao, Weijun & Wu, Qiong, 2010. "Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 87(12), pages 3642-3651, December.
    5. Limpens, Gauthier & Moret, Stefano & Jeanmart, Hervé & Maréchal, Francois, 2019. "EnergyScope TD: A novel open-source model for regional energy systems," Applied Energy, Elsevier, vol. 255(C).
    6. Wang, Haichao & Yin, Wusong & Abdollahi, Elnaz & Lahdelma, Risto & Jiao, Wenling, 2015. "Modelling and optimization of CHP based district heating system with renewable energy production and energy storage," Applied Energy, Elsevier, vol. 159(C), pages 401-421.
    7. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    8. Benalcazar, Pablo, 2021. "Optimal sizing of thermal energy storage systems for CHP plants considering specific investment costs: A case study," Energy, Elsevier, vol. 234(C).
    9. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2016. "Multi-objective optimization of a distributed energy network integrated with heating interchange," Energy, Elsevier, vol. 109(C), pages 353-364.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Im, Yong-Hoon & Liu, Jie, 2018. "Feasibility study on the low temperature district heating and cooling system with bi-lateral heat trades model," Energy, Elsevier, vol. 153(C), pages 988-999.
    2. Kazagic, Anes & Merzic, Ajla & Redzic, Elma & Tresnjo, Dino, 2019. "Optimization of modular district heating solution based on CHP and RES - Demonstration case of the Municipality of Visoko," Energy, Elsevier, vol. 181(C), pages 56-65.
    3. Jiménez Navarro, Juan Pablo & Kavvadias, Konstantinos C. & Quoilin, Sylvain & Zucker, Andreas, 2018. "The joint effect of centralised cogeneration plants and thermal storage on the efficiency and cost of the power system," Energy, Elsevier, vol. 149(C), pages 535-549.
    4. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2017. "Decarbonizing the electricity grid: The impact on urban energy systems, distribution grids and district heating potential," Applied Energy, Elsevier, vol. 191(C), pages 125-140.
    5. Jimenez-Navarro, Juan-Pablo & Kavvadias, Konstantinos & Filippidou, Faidra & Pavičević, Matija & Quoilin, Sylvain, 2020. "Coupling the heating and power sectors: The role of centralised combined heat and power plants and district heat in a European decarbonised power system," Applied Energy, Elsevier, vol. 270(C).
    6. Régis Delubac & Sylvain Serra & Sabine Sochard & Jean-Michel Reneaume, 2021. "A Dynamic Optimization Tool to Size and Operate Solar Thermal District Heating Networks Production Plants," Energies, MDPI, vol. 14(23), pages 1-27, November.
    7. Da Li & Shijie Zhang & Yunhan Xiao, 2020. "Interval Optimization-Based Optimal Design of Distributed Energy Resource Systems under Uncertainties," Energies, MDPI, vol. 13(13), pages 1-18, July.
    8. Chambers, Jonathan & Narula, Kapil & Sulzer, Matthias & Patel, Martin K., 2019. "Mapping district heating potential under evolving thermal demand scenarios and technologies: A case study for Switzerland," Energy, Elsevier, vol. 176(C), pages 682-692.
    9. Najafi, Arsalan & Falaghi, Hamid & Contreras, Javier & Ramezani, Maryam, 2016. "Medium-term energy hub management subject to electricity price and wind uncertainty," Applied Energy, Elsevier, vol. 168(C), pages 418-433.
    10. Prasanna, Ashreeta & Dorer, Viktor & Vetterli, Nadège, 2017. "Optimisation of a district energy system with a low temperature network," Energy, Elsevier, vol. 137(C), pages 632-648.
    11. Østergaard, Poul Alberg & Andersen, Anders N., 2018. "Economic feasibility of booster heat pumps in heat pump-based district heating systems," Energy, Elsevier, vol. 155(C), pages 921-929.
    12. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Træholt, Chresten, 2018. "Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage," Renewable Energy, Elsevier, vol. 123(C), pages 204-217.
    13. Sacha Hodencq & Mathieu Brugeron & Jaume Fitó & Lou Morriet & Benoit Delinchant & Frédéric Wurtz, 2021. "OMEGAlpes, an Open-Source Optimisation Model Generation Tool to Support Energy Stakeholders at District Scale," Energies, MDPI, vol. 14(18), pages 1-30, September.
    14. Badami, Marco & Fonti, Antonio & Carpignano, Andrea & Grosso, Daniele, 2018. "Design of district heating networks through an integrated thermo-fluid dynamics and reliability modelling approach," Energy, Elsevier, vol. 144(C), pages 826-838.
    15. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    16. Wirtz, Marco & Kivilip, Lukas & Remmen, Peter & Müller, Dirk, 2020. "5th Generation District Heating: A novel design approach based on mathematical optimization," Applied Energy, Elsevier, vol. 260(C).
    17. Dincer, Ibrahim & Acar, Canan, 2017. "Smart energy systems for a sustainable future," Applied Energy, Elsevier, vol. 194(C), pages 225-235.
    18. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    19. Pakere, Ieva & Gravelsins, Armands & Lauka, Dace & Bazbauers, Gatis & Blumberga, Dagnija, 2021. "Linking energy efficiency policies toward 4th generation district heating system," Energy, Elsevier, vol. 234(C).
    20. Pizzolato, Alberto & Sciacovelli, Adriano & Verda, Vittorio, 2019. "Centralized control of district heating networks during failure events using discrete adjoint sensitivities," Energy, Elsevier, vol. 184(C), pages 58-72.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1942-:d:765905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.