IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1781-d760716.html
   My bibliography  Save this article

Comparison of Indoor Environment and Energy Consumption before and after Spread of COVID-19 in Schools in Japanese Cold-Climate Region

Author

Listed:
  • Taro Mori

    (Graduate School of Engineering, Hokkaido University, Kitaku-Kita13Nishi8, Sapporo 060-8628, Japan)

  • Taisei Akamatsu

    (Graduate School of Engineering, Hokkaido University, Kitaku-Kita13Nishi8, Sapporo 060-8628, Japan)

  • Kouhei Kuwabara

    (Graduate School of Engineering, Hokkaido University, Kitaku-Kita13Nishi8, Sapporo 060-8628, Japan)

  • Motoya Hayashi

    (Graduate School of Engineering, Hokkaido University, Kitaku-Kita13Nishi8, Sapporo 060-8628, Japan)

Abstract

A report released by the WHO indicates that aerosols from infected people are one of the major sources of the spread of COVID-19. Therefore, as the COVID-19 infection caused by the SARS-CoV-2 virus spreads, it has become necessary to reconsider the design and operation of buildings. Inside school buildings in cold regions, not only is it not easy to increase ventilation during the winter, but it may also be difficult for students to attend classes while wearing masks during the summer because such buildings are not equipped with air-conditioning systems. In short, school buildings in cold climates have more problems than those in warm climates. We report on the results of indoor environmental measurement using our developed CO 2 -concentration meters, a questionnaire survey on students’ feeling of being hot or cold (i.e., ‘thermal sensation’), and a comparison of energy consumption before and after the spread of COVID-19 infection in schools in Sapporo, Japan, a cold-climate area. The results indicate that (1) more than 70% of the students participated in window ventilation by the CO 2 meter, and (2) a relatively good indoor environment was maintained through the efforts of teachers and students. However, we also found that (1) 90% of the students felt hot in summer and (2) 40% felt cold in winter, (3) energy efficiency worsened by 7% due to increased ventilation, and (4) air quality was not as clean as desired during the coldest months of the year. Therefore, investment in insulation and air conditioning systems for school buildings is needed.

Suggested Citation

  • Taro Mori & Taisei Akamatsu & Kouhei Kuwabara & Motoya Hayashi, 2022. "Comparison of Indoor Environment and Energy Consumption before and after Spread of COVID-19 in Schools in Japanese Cold-Climate Region," Energies, MDPI, vol. 15(5), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1781-:d:760716
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1781/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1781/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James D. Munday & Katharine Sherratt & Sophie Meakin & Akira Endo & Carl A. B. Pearson & Joel Hellewell & Sam Abbott & Nikos I. Bosse & Katherine E. Atkins & Jacco Wallinga & W. John Edmunds & Albert , 2021. "Implications of the school-household network structure on SARS-CoV-2 transmission under school reopening strategies in England," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Kang, Hyuna & An, Jongbaek & Kim, Hakpyeong & Ji, Changyoon & Hong, Taehoon & Lee, Seunghye, 2021. "Changes in energy consumption according to building use type under COVID-19 pandemic in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moghadam, Talie T. & Ochoa Morales, Carlos E. & Lopez Zambrano, Maria J. & Bruton, Ken & O'Sullivan, Dominic T.J., 2023. "Energy efficient ventilation and indoor air quality in the context of COVID-19 - A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Junsoo & Kim, Tae Wan & Koo, Choongwan, 2022. "A novel process model for developing a scalable room-level energy benchmark using real-time bigdata: Focused on identifying representative energy usage patterns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Petricli, Gulcan & Inkaya, Tulin & Gokay Emel, Gul, 2024. "Identifying green citizen typologies by mining household-level survey data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Hong, Yejin & Yoon, Sungmin & Choi, Sebin, 2023. "Operational signature-based symbolic hierarchical clustering for building energy, operation, and efficiency towards carbon neutrality," Energy, Elsevier, vol. 265(C).
    4. Kang, Hyuna & Jung, Seunghoon & Kim, Hakpyeong & Jeoung, Jaewon & Hong, Taehoon, 2024. "Reinforcement learning-based optimal scheduling model of battery energy storage system at the building level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    5. Tsai, I-Chun & Chen, Han-Bo & Lin, Che-Chun, 2024. "The ability of energy commodities to hedge the dynamic risk of epidemic black swans," Resources Policy, Elsevier, vol. 89(C).
    6. Minseok Jang & Hyun Cheol Jeong & Taegon Kim & Dong Hee Suh & Sung-Kwan Joo, 2021. "Empirical Analysis of the Impact of COVID-19 Social Distancing on Residential Electricity Consumption Based on Demographic Characteristics and Load Shape," Energies, MDPI, vol. 14(22), pages 1-15, November.
    7. Niu, Shuhai & Chen, Yidong & Zhang, Ruiwen & Luo, Renfu & Feng, Yanchao, 2023. "Identifying and assessing the global causality among energy poverty, educational development, and public health from a novel perspective of natural resource policy optimization," Resources Policy, Elsevier, vol. 83(C).
    8. Indre Siksnelyte-Butkiene, 2021. "Impact of the COVID-19 Pandemic to the Sustainability of the Energy Sector," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    9. Shahzad, Umer & Mohammed, Kamel Si & Tiwari, Sunil & Nakonieczny, Joanna & Nesterowicz, Renata, 2023. "Connectedness between geopolitical risk, financial instability indices and precious metals markets: Novel findings from Russia Ukraine conflict perspective," Resources Policy, Elsevier, vol. 80(C).
    10. Simona Andreea Apostu & Iza Gigauri & Mirela Panait & Pedro A. Martín-Cervantes, 2023. "Is Europe on the Way to Sustainable Development? Compatibility of Green Environment, Economic Growth, and Circular Economy Issues," IJERPH, MDPI, vol. 20(2), pages 1-17, January.
    11. Izadi, Ali & Shahafve, Masoomeh & Ahmadi, Pouria & Hanafizadeh, Pedram, 2023. "Design, and optimization of COVID-19 hospital wards to produce Oxygen and electricity through solar PV panels with hydrogen storage systems by neural network-genetic algorithm," Energy, Elsevier, vol. 263(PA).
    12. Jeadran Malagón-Rojas & Daniela Mendez-Molano & Julia Almentero & Yesith G. Toloza-Pérez & Eliana L. Parra-Barrera & Claudia P. Gómez-Rendón, 2022. "Environmental Effects of the COVID-19 Pandemic: The Experience of Bogotá, 2020," IJERPH, MDPI, vol. 19(10), pages 1-11, May.
    13. Domenico Palladino & Silvia Di Turi & Iole Nardi, 2021. "Energy and Environmental Effects of Human Habits in Residential Buildings Due to COVID-19 Outbreak Scenarios in a Dwelling near Rome," Energies, MDPI, vol. 14(21), pages 1-24, November.
    14. Luis Bernardo López-Sosa & José Juan Alvarado-Flores & Teresita del Niño Jesús Marín-Aguilar & Juan Carlos Corral-Huacuz & Arturo Aguilera-Mandujano & Gerardo Manuel Rodríguez-Torres & Mario Morales-M, 2021. "COVID-19 Pandemic Effect on Energy Consumption in State Universities: Michoacan, Mexico Case Study," Energies, MDPI, vol. 14(22), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1781-:d:760716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.