IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1705-d757979.html
   My bibliography  Save this article

A Type-2 Fuzzy Controller for Floating Tension-Leg Platforms in Wind Turbines

Author

Listed:
  • Behnam Firouzi

    (Vibrations and Acoustics Laboratory (VAL), Mechanical Engineering Department, Ozyegin University, Istanbul 34794, Turkey)

  • Khalid A. Alattas

    (Department of Computer Science and Artificial Intelligence, College of Computer Science and Engineering, University of Jeddah, Jeddah 21959, Saudi Arabia)

  • Mohsen Bakouri

    (Department of Medical Equipment Technology, College of Applied Medical Science, Majmaah University, Majmaah 11952, Saudi Arabia
    Department of Physics, College of Arts, Fezzan University, Traghen 71340, Libya)

  • Abdullah K. Alanazi

    (Department of Chemistry, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Ardashir Mohammadzadeh

    (Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
    School of Engineering and Technology, Duy Tan University, Da Nang 550000, Vietnam)

  • Saleh Mobayen

    (Future Technology Research Center, National Yunlin University of Science and Technology, Douliu 64002, Taiwan)

  • Afef Fekih

    (Department of Electrical and Computer Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA)

Abstract

This paper proposes a type-2 fuzzy controller for floating tension-leg platforms in wind turbines. Its main objective is to stabilize and control offshore floating wind turbines exposed to oscillating motions. The proposed approach assumes that the dynamics of all units are completely unknown. The latter are approximated using the proposed Sugeno-based type-2 fuzzy approach. A nonlinear Kalman-based algorithm is developed for parameter optimization, and linear matrix inequalities are derived to analyze the system’s stability. For the fuzzy system, both rules and membership functions are optimized. Additionally, in the designed approach, the estimation error of the type-2 fuzzy approach is also considered in the stability analysis. The effectiveness and performance of the proposed approach is assessed using a simulation study of a tension leg platform subject to various disturbance modes.

Suggested Citation

  • Behnam Firouzi & Khalid A. Alattas & Mohsen Bakouri & Abdullah K. Alanazi & Ardashir Mohammadzadeh & Saleh Mobayen & Afef Fekih, 2022. "A Type-2 Fuzzy Controller for Floating Tension-Leg Platforms in Wind Turbines," Energies, MDPI, vol. 15(5), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1705-:d:757979
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1705/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1705/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yijin Li & Jianhua Lin & Geng Niu & Ming Wu & Xuteng Wei, 2021. "A Hilbert–Huang Transform-Based Adaptive Fault Detection and Classification Method for Microgrids," Energies, MDPI, vol. 14(16), pages 1-16, August.
    2. Becky Corley & Sofia Koukoura & James Carroll & Alasdair McDonald, 2021. "Combination of Thermal Modelling and Machine Learning Approaches for Fault Detection in Wind Turbine Gearboxes," Energies, MDPI, vol. 14(5), pages 1-14, March.
    3. Piotr Derugo & Krzysztof Szabat & Tomasz Pajchrowski & Krzysztof Zawirski, 2022. "Fuzzy Adaptive Type II Controller for Two-Mass System," Energies, MDPI, vol. 15(2), pages 1-24, January.
    4. Zhang, Mingming & Li, Xin & Tong, Jingxin & Xu, Jianzhong, 2020. "Load control of floating wind turbine on a Tension-Leg-Platform subject to extreme wind condition," Renewable Energy, Elsevier, vol. 151(C), pages 993-1007.
    5. Piotr Gajewski & Krzysztof Pieńkowski, 2021. "Control of the Hybrid Renewable Energy System with Wind Turbine, Photovoltaic Panels and Battery Energy Storage," Energies, MDPI, vol. 14(6), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    2. Alessandro Murgia & Robbert Verbeke & Elena Tsiporkova & Ludovico Terzi & Davide Astolfi, 2023. "Discussion on the Suitability of SCADA-Based Condition Monitoring for Wind Turbine Fault Diagnosis through Temperature Data Analysis," Energies, MDPI, vol. 16(2), pages 1-20, January.
    3. Marcin Kaminski & Tomasz Tarczewski, 2023. "Neural Network Applications in Electrical Drives—Trends in Control, Estimation, Diagnostics, and Construction," Energies, MDPI, vol. 16(11), pages 1-25, May.
    4. Younis M. Nsaif & Molla Shahadat Hossain Lipu & Aini Hussain & Afida Ayob & Yushaizad Yusof & Muhammad Ammirrul A. M. Zainuri, 2022. "A Novel Fault Detection and Classification Strategy for Photovoltaic Distribution Network Using Improved Hilbert–Huang Transform and Ensemble Learning Technique," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    5. Bruce Stephen, 2022. "Machine Learning Applications in Power System Condition Monitoring," Energies, MDPI, vol. 15(5), pages 1-2, March.
    6. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    7. Wang, Shuaishuai & Moan, Torgeir & Jiang, Zhiyu, 2022. "Influence of variability and uncertainty of wind and waves on fatigue damage of a floating wind turbine drivetrain," Renewable Energy, Elsevier, vol. 181(C), pages 870-897.
    8. Wakui, Tetsuya & Nagamura, Atsushi & Yokoyama, Ryohei, 2021. "Stabilization of power output and platform motion of a floating offshore wind turbine-generator system using model predictive control based on previewed disturbances," Renewable Energy, Elsevier, vol. 173(C), pages 105-127.
    9. Sohaib Abdeslam Boulanouar & Ameur Miloud Kaddouri & Abdellah Kouzou & Amar Benaissa & Ali Teta & Ahmed Hafaifa & Ralph Kennel & Mohamed Abdelrahem, 2023. "Multifunctional Control Technique for Grid-Tied Hybrid Distributed Generation System Taking into Account Power Quality Issues," Energies, MDPI, vol. 16(18), pages 1-22, September.
    10. Naamane Debdouche & Brahim Deffaf & Habib Benbouhenni & Zarour Laid & Mohamed I. Mosaad, 2023. "Direct Power Control for Three-Level Multifunctional Voltage Source Inverter of PV Systems Using a Simplified Super-Twisting Algorithm," Energies, MDPI, vol. 16(10), pages 1-32, May.
    11. Armin Razmjoo & Arezoo Ghazanfari & Poul Alberg Østergaard & Mehdi Jahangiri & Andreas Sumper & Sahar Ahmadzadeh & Reza Eslamipoor, 2024. "Moving Toward the Expansion of Energy Storage Systems in Renewable Energy Systems—A Techno-Institutional Investigation with Artificial Intelligence Consideration," Sustainability, MDPI, vol. 16(22), pages 1-25, November.
    12. Huan Zhou & Jianyun Chen & Manyuan Ye & Qincui Fu & Song Li, 2023. "Transient Fault Signal Identification of AT Traction Network Based on Improved HHT and LSTM Neural Network Algorithm," Energies, MDPI, vol. 16(3), pages 1-21, January.
    13. Jacek Kabziński & Przemysław Mosiołek, 2022. "Observer-Based, Robust Position Tracking in Two-Mass Drive System," Energies, MDPI, vol. 15(23), pages 1-28, November.
    14. Sahin, Mustafa & Yavrucuk, Ilkay, 2022. "Adaptive envelope protection control of wind turbines under varying operational conditions," Energy, Elsevier, vol. 247(C).
    15. Ravi Kumar Pandit & Davide Astolfi & Isidro Durazo Cardenas, 2023. "A Review of Predictive Techniques Used to Support Decision Making for Maintenance Operations of Wind Turbines," Energies, MDPI, vol. 16(4), pages 1-17, February.
    16. Zheng, Yidan & Liu, Huiwen & Chamorro, Leonardo P. & Zhao, Zhenzhou & Li, Ye & Zheng, Yuan & Tang, Kexin, 2023. "Impact of turbulence level on intermittent-like events in the wake of a model wind turbine," Renewable Energy, Elsevier, vol. 203(C), pages 45-55.
    17. Younis M. Nsaif & Molla Shahadat Hossain Lipu & Aini Hussain & Afida Ayob & Yushaizad Yusof & Muhammad Ammirrul A. M. Zainuri, 2022. "A New Voltage Based Fault Detection Technique for Distribution Network Connected to Photovoltaic Sources Using Variational Mode Decomposition Integrated Ensemble Bagged Trees Approach," Energies, MDPI, vol. 15(20), pages 1-20, October.
    18. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    19. Davide Astolfi, 2023. "Wind Turbine Drivetrain Condition Monitoring through SCADA-Collected Temperature Data: Discussion of Selected Recent Papers," Energies, MDPI, vol. 16(9), pages 1-4, April.
    20. Elkholy, M.H. & Elymany, Mahmoud & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Design and implementation of a Real-time energy management system for an isolated Microgrid: Experimental validation," Applied Energy, Elsevier, vol. 327(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1705-:d:757979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.