IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1362-d748817.html
   My bibliography  Save this article

Transaction Model Based on Stackelberg Game Method for Balancing Supply and Demand Sides of Multi-Energy Microgrid

Author

Listed:
  • Meifang Wei

    (Academic Affairs Office, Changsha Electric Power Technical College, Changsha 410131, China)

  • Youyue Deng

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Min Long

    (Academic Affairs Office, Changsha Electric Power Technical College, Changsha 410131, China)

  • Yahui Wang

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Yong Li

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

Abstract

To improve the coordination and complementarity of multiple energy sources, balancing the interests of different participants in a multi-energy system is of great importance. However, traditional centralized optimization can hardly reflect the game relationship between supply side and demand sides. A trading model based on the Stackelberg game model is proposed in this paper to balance the interests of the supply side and demand side and reduce the carbon emissions. First of all, the process of trading between the supply side and demand side based on smart contracts is described. A contractual consensus is obtained through an internal game, and the transaction is completed automatically. Secondly, a bilevel optimization model is established to coordinate the benefits of both parties based on the Stackelberg game model. The energy operator acts as a leader, and considers the two objectives, i.e., maximizing net income and minimizing carbon emissions, and uses the linear weighting method to convert the dual objectives into single objective. Users act as followers and aim to increase the comprehensive benefits, including energy cost and comfort. Then, Karush–Kuhn–Tucker optimality condition is used to transform the bilevel optimization model into an equivalent single-level model. Finally, simulation results show that the proposed method can coordinate the economic interests of both sides of supply and demand and effectively reduce the carbon emissions of the energy operator.

Suggested Citation

  • Meifang Wei & Youyue Deng & Min Long & Yahui Wang & Yong Li, 2022. "Transaction Model Based on Stackelberg Game Method for Balancing Supply and Demand Sides of Multi-Energy Microgrid," Energies, MDPI, vol. 15(4), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1362-:d:748817
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1362/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1362/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Peng & Wang, Zixuan & Wang, Jiahao & Yang, Weihong & Guo, Tianyu & Yin, Yunxing, 2021. "Two-stage optimal operation of integrated energy system considering multiple uncertainties and integrated demand response," Energy, Elsevier, vol. 225(C).
    2. Wei, F. & Jing, Z.X. & Wu, Peter Z. & Wu, Q.H., 2017. "A Stackelberg game approach for multiple energies trading in integrated energy systems," Applied Energy, Elsevier, vol. 200(C), pages 315-329.
    3. Xiang, Yue & Cai, Hanhu & Gu, Chenghong & Shen, Xiaodong, 2020. "Cost-benefit analysis of integrated energy system planning considering demand response," Energy, Elsevier, vol. 192(C).
    4. Wang, Yongli & Ma, Yuze & Song, Fuhao & Ma, Yang & Qi, Chengyuan & Huang, Feifei & Xing, Juntai & Zhang, Fuwei, 2020. "Economic and efficient multi-objective operation optimization of integrated energy system considering electro-thermal demand response," Energy, Elsevier, vol. 205(C).
    5. Feng, Peiling & He, Xing, 2021. "Mixed neurodynamic optimization for the operation of multiple energy systems considering economic and environmental aspects," Energy, Elsevier, vol. 232(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Qing & Guo, Qisheng & Zeng, Wei, 2022. "Optimization scheduling of integrated energy service system in community: A bi-layer optimization model considering multi-energy demand response and user satisfaction," Energy, Elsevier, vol. 252(C).
    2. Lu, Zhiming & Gao, Yan & Xu, Chuanbo, 2021. "Evaluation of energy management system for regional integrated energy system under interval type-2 hesitant fuzzy environment," Energy, Elsevier, vol. 222(C).
    3. Hou, Langbo & Tong, Xi & Chen, Heng & Fan, Lanxin & Liu, Tao & Liu, Wenyi & Liu, Tong, 2024. "Optimized scheduling of smart community energy systems considering demand response and shared energy storage," Energy, Elsevier, vol. 295(C).
    4. Wang, Shouxiang & Wang, Shaomin & Zhao, Qianyu & Dong, Shuai & Li, Hao, 2023. "Optimal dispatch of integrated energy station considering carbon capture and hydrogen demand," Energy, Elsevier, vol. 269(C).
    5. Wang, Liying & Lin, Jialin & Dong, Houqi & Wang, Yuqing & Zeng, Ming, 2023. "Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system," Energy, Elsevier, vol. 270(C).
    6. Liang, Ziwen & Mu, Longhua, 2024. "Multi-agent low-carbon optimal dispatch of regional integrated energy system based on mixed game theory," Energy, Elsevier, vol. 295(C).
    7. Li, Ke & Ye, Ning & Li, Shuzhen & Wang, Haiyang & Zhang, Chenghui, 2023. "Distributed collaborative operation strategies in multi-agent integrated energy system considering integrated demand response based on game theory," Energy, Elsevier, vol. 273(C).
    8. Dezhou Kong & Jianru Jing & Tingyue Gu & Xuanyue Wei & Xingning Sa & Yimin Yang & Zhiang Zhang, 2023. "Theoretical Analysis of Integrated Community Energy Systems (ICES) Considering Integrated Demand Response (IDR): A Review of the System Modelling and Optimization," Energies, MDPI, vol. 16(10), pages 1-22, May.
    9. Jiajia Li & Jinfu Liu & Peigang Yan & Xingshuo Li & Guowen Zhou & Daren Yu, 2021. "Operation Optimization of Integrated Energy System under a Renewable Energy Dominated Future Scene Considering Both Independence and Benefit: A Review," Energies, MDPI, vol. 14(4), pages 1-36, February.
    10. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    11. Pan, Chongchao & Jin, Tai & Li, Na & Wang, Guanxiong & Hou, Xiaowang & Gu, Yueqing, 2023. "Multi-objective and two-stage optimization study of integrated energy systems considering P2G and integrated demand responses," Energy, Elsevier, vol. 270(C).
    12. He, Shuaijia & Gao, Hongjun & Wang, Lingfeng & Xiang, Yingmeng & Liu, Junyong, 2020. "Distributionally robust planning for integrated energy systems incorporating electric-thermal demand response," Energy, Elsevier, vol. 213(C).
    13. Zhu, Xu & Sun, Yuanzhang & Yang, Jun & Dou, Zhenlan & Li, Gaojunjie & Xu, Chengying & Wen, Yuxin, 2022. "Day-ahead energy pricing and management method for regional integrated energy systems considering multi-energy demand responses," Energy, Elsevier, vol. 251(C).
    14. Wang, Yongli & Liu, Zhen & Cai, Chengcong & Xue, Lu & Ma, Yang & Shen, Hekun & Chen, Xin & Liu, Lin, 2022. "Research on the optimization method of integrated energy system operation with multi-subject game," Energy, Elsevier, vol. 245(C).
    15. Li, Haoran & Zhang, Chenghui & Sun, Bo, 2022. "Deep integration planning of sustainable energies in district energy system and distributed energy station," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    16. Li, Yang & Han, Meng & Shahidehpour, Mohammad & Li, Jiazheng & Long, Chao, 2023. "Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response," Applied Energy, Elsevier, vol. 335(C).
    17. Li, Songrui & Zhang, Lihui & Nie, Lei & Wang, Jianing, 2022. "Trading strategy and benefit optimization of load aggregators in integrated energy systems considering integrated demand response: A hierarchical Stackelberg game," Energy, Elsevier, vol. 249(C).
    18. Lu, Shuai & Li, Yuan & Gu, Wei & Xu, Yijun & Ding, Shixing, 2023. "Economy-carbon coordination in integrated energy systems: Optimal dispatch and sensitivity analysis," Applied Energy, Elsevier, vol. 351(C).
    19. Li, Xiaozhu & Wang, Weiqing & Wang, Haiyun, 2021. "A novel bi-level robust game model to optimize a regionally integrated energy system with large-scale centralized renewable-energy sources in Western China," Energy, Elsevier, vol. 228(C).
    20. Lyu, Xiangmei & Liu, Tianqi & Liu, Xuan & He, Chuan & Nan, Lu & Zeng, Hong, 2023. "Low-carbon robust economic dispatch of park-level integrated energy system considering price-based demand response and vehicle-to-grid," Energy, Elsevier, vol. 263(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1362-:d:748817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.