IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p1096-d740594.html
   My bibliography  Save this article

Flywheel Energy Storage System in Italian Regional Transport Railways: A Case Study

Author

Listed:
  • Aldo Canova

    (Dipartimento Energia “G. Ferraris”, Politecnico di Torino, 10129 Torino, Italy
    These authors contributed equally to this work.)

  • Federico Campanelli

    (Dipartimento Energia “G. Ferraris”, Politecnico di Torino, 10129 Torino, Italy
    These authors contributed equally to this work.)

  • Michele Quercio

    (Dipartimento Energia “G. Ferraris”, Politecnico di Torino, 10129 Torino, Italy
    These authors contributed equally to this work.)

Abstract

In this paper, we looked at the role of electromechanical storage in railway applications. A mathematical model of a running train was interfaced with real products on the electromechanical storage market supposed to be installed at the substation. Through this simulation, we gathered data on the recoverable energy of the system, its advantages, and its limitations. Various storage powers were run along variations in speed and gradient to paint a clearer picture of this application. Throughout these simulations, the energy savings were between 25% and 38%, saving up to 0.042 kWh/(seat km).

Suggested Citation

  • Aldo Canova & Federico Campanelli & Michele Quercio, 2022. "Flywheel Energy Storage System in Italian Regional Transport Railways: A Case Study," Energies, MDPI, vol. 15(3), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1096-:d:740594
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/1096/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/1096/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    2. Khare, Vikas & Nema, Savita & Baredar, Prashant, 2016. "Solar–wind hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 23-33.
    3. Elhadidy, M.A. & Shaahid, S.M., 2000. "Parametric study of hybrid (wind + solar + diesel) power generating systems," Renewable Energy, Elsevier, vol. 21(2), pages 129-139.
    4. Zhao, Haoran & Wu, Qiuwei & Hu, Shuju & Xu, Honghua & Rasmussen, Claus Nygaard, 2015. "Review of energy storage system for wind power integration support," Applied Energy, Elsevier, vol. 137(C), pages 545-553.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre De Bernardinis & Richard Lallemand & Abdelfatah Kolli, 2023. "Highly Efficient Three-Phase Bi-Directional SiC DC–AC Inverter for Electric Vehicle Flywheel Emulator," Energies, MDPI, vol. 16(12), pages 1-15, June.
    2. Valentina Lucaferri & Michele Quercio & Antonino Laudani & Francesco Riganti Fulginei, 2023. "A Review on Battery Model-Based and Data-Driven Methods for Battery Management Systems," Energies, MDPI, vol. 16(23), pages 1-19, November.
    3. Hongjin Hu & Haoze Wang & Kun Liu & Jingbo Wei & Xiangjie Shen, 2022. "A Simplified Space Vector Pulse Width Modulation Algorithm of a High-Speed Permanent Magnet Synchronous Machine Drive for a Flywheel Energy Storage System," Energies, MDPI, vol. 15(11), pages 1-21, June.
    4. Giuseppe Fabri & Antonio Ometto & Marco Villani & Gino D’Ovidio, 2022. "A Battery-Free Sustainable Powertrain Solution for Hydrogen Fuel Cell City Transit Bus Application," Sustainability, MDPI, vol. 14(9), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
    2. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    4. Saboori, Hedayat & Hemmati, Reza, 2017. "Maximizing DISCO profit in active distribution networks by optimal planning of energy storage systems and distributed generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 365-372.
    5. Muhammad Umair Mutarraf & Yacine Terriche & Kamran Ali Khan Niazi & Juan C. Vasquez & Josep M. Guerrero, 2018. "Energy Storage Systems for Shipboard Microgrids—A Review," Energies, MDPI, vol. 11(12), pages 1-32, December.
    6. Maria Symeonidou & Agis M. Papadopoulos, 2022. "Selection and Dimensioning of Energy Storage Systems for Standalone Communities: A Review," Energies, MDPI, vol. 15(22), pages 1-28, November.
    7. Moradi, Jalal & Shahinzadeh, Hossein & Khandan, Amirsalar & Moazzami, Majid, 2017. "A profitability investigation into the collaborative operation of wind and underwater compressed air energy storage units in the spot market," Energy, Elsevier, vol. 141(C), pages 1779-1794.
    8. Li, Jianwei & Yang, Qingqing & Robinson, Francis. & Liang, Fei & Zhang, Min & Yuan, Weijia, 2017. "Design and test of a new droop control algorithm for a SMES/battery hybrid energy storage system," Energy, Elsevier, vol. 118(C), pages 1110-1122.
    9. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    10. Arani, A.A. Khodadoost & Karami, H. & Gharehpetian, G.B. & Hejazi, M.S.A., 2017. "Review of Flywheel Energy Storage Systems structures and applications in power systems and microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 9-18.
    11. Hannan, M.A. & Faisal, M. & Jern Ker, Pin & Begum, R.A. & Dong, Z.Y. & Zhang, C., 2020. "Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Weiliang Wang & Dan Wang & Liu Liu & Hongjie Jia & Yunqiang Zhi & Zhengji Meng & Wei Du, 2019. "Research on Modeling and Hierarchical Scheduling of a Generalized Multi-Source Energy Storage System in an Integrated Energy Distribution System," Energies, MDPI, vol. 12(2), pages 1-28, January.
    13. Hu, Yu & Solana, Pablo, 2013. "Optimization of a hybrid diesel-wind generation plant with operational options," Renewable Energy, Elsevier, vol. 51(C), pages 364-372.
    14. Zhang, Tianhang & Qin, Shusong & Wei, Guohua & Xie, Min & Peng, Yirui & Tang, Zhipei & Sun, Qiaoqun & Du, Qian & Feng, Dongdong & Gao, Jianmin & Li, Ximei & Zhang, Yu, 2023. "Thermodynamic analysis of a novel trans-critical compressed carbon dioxide energy storage system based on 13X zeolite temperature swing adsorption," Energy, Elsevier, vol. 282(C).
    15. Lindström, Erik & Norén, Vicke & Madsen, Henrik, 2015. "Consumption management in the Nord Pool region: A stability analysis," Applied Energy, Elsevier, vol. 146(C), pages 239-246.
    16. Hemmati, Reza & Saboori, Hedayat, 2016. "Emergence of hybrid energy storage systems in renewable energy and transport applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 11-23.
    17. Xiaotong Qie & Rui Zhang & Yanyong Hu & Xialing Sun & Xue Chen, 2021. "A Multi-Criteria Decision-Making Approach for Energy Storage Technology Selection Based on Demand," Energies, MDPI, vol. 14(20), pages 1-29, October.
    18. Rahman, Md Mustafizur & Oni, Abayomi Olufemi & Gemechu, Eskinder & Kumar, Amit, 2021. "The development of techno-economic models for the assessment of utility-scale electro-chemical battery storage systems," Applied Energy, Elsevier, vol. 283(C).
    19. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    20. Javed, Muhammad Shahzad & Zhong, Dan & Ma, Tao & Song, Aotian & Ahmed, Salman, 2020. "Hybrid pumped hydro and battery storage for renewable energy based power supply system," Applied Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1096-:d:740594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.