IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p1072-d739738.html
   My bibliography  Save this article

Repowering Coal Power in China by Nuclear Energy—Implementation Strategy and Potential

Author

Listed:
  • Song Xu

    (College of Energy, Xiamen University, Xiamen 361001, China)

  • Yiu Hin Martin Lu

    (College of Energy, Xiamen University, Xiamen 361001, China)

  • Meiheriayi Mutailipu

    (Department of Electrical Engineering, Xinjiang University, Urumchi 830017, China)

  • Kanti Yan

    (Department of Electrical Engineering, Xinjiang University, Urumchi 830017, China)

  • Yaoli Zhang

    (College of Energy, Xiamen University, Xiamen 361001, China
    Research Center for Nuclear Engineering, Xiamen 361001, China)

  • Staffan Qvist

    (Qvist Consulting Limited, Maidenhead SL6 8EW, UK)

Abstract

This article discusses a sustainable low-carbon development strategy that uses nuclear heat sources to replace coal boilers at existing coal power plants in China, to help support a resource and cost-effective low-carbon development. Based on the local situation in China, a three-stage strategy to explore the potential of repowering coal power by nuclear energy is proposed. The main focus of this study is to conduct a more detailed exploration of the 1st stage of this strategy, which includes coal plants located on the coast in regions that already have nuclear power installations. The study makes use of HTR-PM modular reactor for retrofit analysis for the types of coal units present in 1st stage of the strategy. The results show that: 1. There is a technical and economic basis for exploring nuclear power retrofit decarbonization. This conclusion is backed up by on-site transformation analysis and demonstration of the conversion of representative plant units to ensure the validity and reliability of the data. 2. This research provides a new pathway for the problem of stranded assets in China’s power sector decarbonization. The use of HTR-PM modules for retrofit can save up to 1200 billion $ as well as retaining local jobs and economic activity in areas currently hosting coal plants, which brings to society great economic and social benefits.

Suggested Citation

  • Song Xu & Yiu Hin Martin Lu & Meiheriayi Mutailipu & Kanti Yan & Yaoli Zhang & Staffan Qvist, 2022. "Repowering Coal Power in China by Nuclear Energy—Implementation Strategy and Potential," Energies, MDPI, vol. 15(3), pages 1-27, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1072-:d:739738
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/1072/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/1072/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pollitt, M. & Yang, C-H. & Chen, H., 2017. "Reforming the Chinese Electricity Supply Sector: Lessons from International Experience," Cambridge Working Papers in Economics 1713, Faculty of Economics, University of Cambridge.
    2. Chen, Hao & Tang, Bao-Jun & Liao, Hua & Wei, Yi-Ming, 2016. "A multi-period power generation planning model incorporating the non-carbon external costs: A case study of China," Applied Energy, Elsevier, vol. 183(C), pages 1333-1345.
    3. Yi-Ming Wei & Hua Liao (ed.), 2016. "Energy Economics: Energy Efficiency in China," CEEP-BIT Books, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology, number b5, december.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao Tong & Duo Zhang & Zhijiang Shao & Xiaojin Huang, 2023. "Global Model Calibration of High-Temperature Gas-Cooled Reactor Pebble-Bed Module Using an Adaptive Experimental Design," Energies, MDPI, vol. 16(12), pages 1-25, June.
    2. Henryk Łukowicz & Łukasz Bartela & Paweł Gładysz & Staffan Qvist, 2023. "Repowering a Coal Power Plant Steam Cycle Using Modular Light-Water Reactor Technology," Energies, MDPI, vol. 16(7), pages 1-25, March.
    3. Haneklaus, Nils & Qvist, Staffan & Gładysz, Paweł & Bartela, Łukasz, 2023. "Why coal-fired power plants should get nuclear-ready," Energy, Elsevier, vol. 280(C).
    4. Lucas Reijnders, 2022. "Defining and Operationalizing Sustainability in the Context of Energy," Energies, MDPI, vol. 15(14), pages 1-9, July.
    5. Weng, Tingwei & Zhang, Guangxu & Wang, Haixin & Qi, Mingliang & Qvist, Staffan & Zhang, Yaoli, 2024. "The impact of coal to nuclear on regional energy system," Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Hao & Cui, Jian & Song, Feng & Jiang, Zhigao, 2022. "Evaluating the impacts of reforming and integrating China's electricity sector," Energy Economics, Elsevier, vol. 108(C).
    2. Hao Chen & Chi Kong Chyong & Jia-Ning Kang & Yi-Ming Wei, 2018. "Economic dispatch in the electricity sector in China: potential benefits and challenges ahead," Working Papers EPRG 1819, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. Chen, Hao & Geng, Hao-Peng & Ling, Hui-Ting & Peng, Song & Li, Nan & Yu, Shiwei & Wei, Yi-Ming, 2020. "Modeling the coal-to-gas switch potentials in the power sector: A case study of China," Energy, Elsevier, vol. 192(C).
    4. Wei, Yi-Ming & Chen, Hao & Chyong, Chi Kong & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun, 2018. "Economic dispatch savings in the coal-fired power sector: An empirical study of China," Energy Economics, Elsevier, vol. 74(C), pages 330-342.
    5. Fu, Tong & Jian, Ze, 2020. "A developmental state: How to allocate electricity efficiently in a developing country," Energy Policy, Elsevier, vol. 138(C).
    6. Garfield Wayne Hunter & Gideon Sagoe & Daniele Vettorato & Ding Jiayu, 2019. "Sustainability of Low Carbon City Initiatives in China: A Comprehensive Literature Review," Sustainability, MDPI, vol. 11(16), pages 1-37, August.
    7. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    8. Afful-Dadzie, Anthony & Afful-Dadzie, Eric & Awudu, Iddrisu & Banuro, Joseph Kwaku, 2017. "Power generation capacity planning under budget constraint in developing countries," Applied Energy, Elsevier, vol. 188(C), pages 71-82.
    9. Zhang, Sufang & Andrews-Speed, Philip & Li, Sitao, 2018. "To what extent will China's ongoing electricity market reforms assist the integration of renewable energy?," Energy Policy, Elsevier, vol. 114(C), pages 165-172.
    10. Chen, Hao & Gao, Xin-Ya & Liu, Jian-Yu & Zhang, Qian & Yu, Shiwei & Kang, Jia-Ning & Yan, Rui & Wei, Yi-Ming, 2020. "The grid parity analysis of onshore wind power in China: A system cost perspective," Renewable Energy, Elsevier, vol. 148(C), pages 22-30.
    11. Roberto Cardinale, 2022. "State-Owned Enterprises’ Reforms and their Implications for the Resilience and Vulnerability of the Chinese Economy: Evidence from the Banking, Energy and Telecom Sectors," Networks and Spatial Economics, Springer, vol. 22(3), pages 489-514, September.
    12. Bai-Chen Xie & Jun Xu & Michael G Pollitt, 2020. "What effect has the 2015 power market reform had on power prices in China? Evidence from Guangdong and Zhejiang," Working Papers EPRG2010, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    13. Xu, Dandan & Guo, Dongli & Yue, Pengpeng & Li, Mengshi, 2024. "Household green consumption: Does digital inclusion matter?," International Review of Financial Analysis, Elsevier, vol. 91(C).
    14. Liu, Xiao-Yan & Pollitt, Michael G. & Xie, Bai-Chen & Liu, Li-Qiu, 2019. "Does environmental heterogeneity affect the productive efficiency of grid utilities in China?," Energy Economics, Elsevier, vol. 83(C), pages 333-344.
    15. Jing-Ming Chen & Biying Yu & Yi-Ming Wei, 2019. "CO2 emissions accounting for the chemical industry: an empirical analysis for China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1327-1343, December.
    16. Guangxiao Hu & Xiaoming Ma & Junping Ji, 2017. "A Stochastic Optimization Model for Carbon Mitigation Path under Demand Uncertainty of the Power Sector in Shenzhen, China," Sustainability, MDPI, vol. 9(11), pages 1-12, October.
    17. Michael Pollitt, 2021. "Measuring the Impact of Electricity Market Reform in a Chinese Context," Working Papers EPRG2111, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    18. Zhang, Tao & Li, Hong-Zhou & Xie, Bai-Chen, 2022. "Have renewables and market-oriented reforms constrained the technical efficiency improvement of China's electric grid utilities?," Energy Economics, Elsevier, vol. 114(C).
    19. Liu, Shiyu & Bie, Zhaohong & Lin, Jiang & Wang, Xifan, 2018. "Curtailment of renewable energy in Northwest China and market-based solutions," Energy Policy, Elsevier, vol. 123(C), pages 494-502.
    20. Chen, Hao & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2017. "Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties," Energy Policy, Elsevier, vol. 104(C), pages 23-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1072-:d:739738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.