IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p1058-d739460.html
   My bibliography  Save this article

Solar Radiation Components on a Horizontal Surface in a Tropical Coastal City of Salvador

Author

Listed:
  • Leonardo Rafael Teixeira Cotrim Gomes

    (Interdisciplinary Center for Energy and Environment, Federal University of Bahia, Salvador 40170-115, BA, Brazil)

  • Edson Pereira Marques Filho

    (Interdisciplinary Center for Energy and Environment, Federal University of Bahia, Salvador 40170-115, BA, Brazil)

  • Iuri Muniz Pepe

    (Interdisciplinary Center for Energy and Environment, Federal University of Bahia, Salvador 40170-115, BA, Brazil)

  • Bruno Severino Mascarenhas

    (Interdisciplinary Center for Energy and Environment, Federal University of Bahia, Salvador 40170-115, BA, Brazil)

  • Amauri Pereira de Oliveira

    (Department of Atmospheric Sciences, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, São Paulo 05508-090, SP, Brazil)

  • José Ricardo de A. França

    (Institute of Geosciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-916, RJ, Brazil)

Abstract

Renewable energy must be prioritized by humankind, mainly if there is an expected increase of 50% in energy consumption by 2030 and climate change scenarios are also confirmed. Urban areas consume 70% of the available energy on the planet. Brazil, the largest country in South America, concentrates more than 85% of its population in urban areas, facing a challenge to increase the renewable power plants in its energy matrix. This work presents the solar radiation components behavior for the city of Salvador to contribute with initiatives for the use of solar energy resource. Firstly, a radiometric platform was implemented to obtain direct measurements of global ( E G ) and diffuse ( E D F ) components of incoming solar radiation at the surface. The knowledge of E D F is an important requirement to support photovoltaic system projects, and there is no information on direct measurements of this component in the State of Bahia. The diffuse radiation measurement device (DRMD) was designed and built for this purpose. The measurements of solar radiation components performed in this research were submitted to a specific quality control, statistically analyzed and used to evaluate the performance of different empirical models to represent the behavior of E D F in the tropical coastal city. The results demonstrate the potential to explore solar energy in the city of Salvador, with annual values of sunshine higher than 2200 h year − 1 and average daily intensities of E G and E D F equal to 18.7 MJm − 2 day − 1 and 7.35 MJm − 2 day − 1 , respectively. The analysis of the diurnal cycle shows that E G in summer reaches a maximum of 4.2 MJm − 2 h − 1 and in the rainy season it reaches a minimum of 3.7 MJm − 2 h − 1 , both at noon, and in summer the E D F h is 35% of the E G h and it is 46% in the rainy season.

Suggested Citation

  • Leonardo Rafael Teixeira Cotrim Gomes & Edson Pereira Marques Filho & Iuri Muniz Pepe & Bruno Severino Mascarenhas & Amauri Pereira de Oliveira & José Ricardo de A. França, 2022. "Solar Radiation Components on a Horizontal Surface in a Tropical Coastal City of Salvador," Energies, MDPI, vol. 15(3), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1058-:d:739460
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/1058/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/1058/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Breyer, Christian & Heinonen, Sirkka & Ruotsalainen, Juho, 2017. "New consciousness: A societal and energetic vision for rebalancing humankind within the limits of planet Earth," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 7-15.
    2. Wadim Strielkowski & Irina Firsova & Inna Lukashenko & Jurgita Raudeliūnienė & Manuela Tvaronavičienė, 2021. "Effective Management of Energy Consumption during the COVID-19 Pandemic: The Role of ICT Solutions," Energies, MDPI, vol. 14(4), pages 1-17, February.
    3. Chen, Shaoqing & Chen, Bin, 2016. "Urban energy–water nexus: A network perspective," Applied Energy, Elsevier, vol. 184(C), pages 905-914.
    4. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.
    2. Sales-Setién, Ester & Peñarrocha-Alós, Ignacio, 2020. "Robust estimation and diagnosis of wind turbine pitch misalignments at a wind farm level," Renewable Energy, Elsevier, vol. 146(C), pages 1746-1765.
    3. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    4. Francisco José Sepúlveda & María Teresa Miranda & Irene Montero & José Ignacio Arranz & Francisco Javier Lozano & Manuel Matamoros & Paloma Rodríguez, 2019. "Analysis of Potential Use of Linear Fresnel Collector for Direct Steam Generation in Industries of the Southwest of Europe," Energies, MDPI, vol. 12(21), pages 1-15, October.
    5. Zhou, Dengji & Yan, Siyun & Huang, Dawen & Shao, Tiemin & Xiao, Wang & Hao, Jiarui & Wang, Chen & Yu, Tianqi, 2022. "Modeling and simulation of the hydrogen blended gas-electricity integrated energy system and influence analysis of hydrogen blending modes," Energy, Elsevier, vol. 239(PA).
    6. Colton Brehm & Astrid Layton, 2021. "Nestedness of eco‐industrial networks: Exploring linkage distribution to promote sustainable industrial growth," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 205-218, February.
    7. Wadim Strielkowski & Anna Sherstobitova & Patrik Rovny & Tatiana Evteeva, 2021. "Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review," Energies, MDPI, vol. 14(11), pages 1-19, May.
    8. Hu, Xincheng & Banks, Jonathan & Wu, Linping & Liu, Wei Victor, 2020. "Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta," Renewable Energy, Elsevier, vol. 148(C), pages 1110-1123.
    9. Panyam, Varuneswara & Huang, Hao & Davis, Katherine & Layton, Astrid, 2019. "Bio-inspired design for robust power grid networks," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Ana Salomé García-Muñiz & María Rosalía Vicente, 2021. "The Effects of Informational Feedback on the Energy Consumption of Online Services: Some Evidence for the European Union," Energies, MDPI, vol. 14(10), pages 1-14, May.
    11. Vicente Javier Clemente-Suárez & Stephanie Rodriguez-Besteiro & Juan José Cabello-Eras & Alvaro Bustamante-Sanchez & Eduardo Navarro-Jiménez & Macarena Donoso-Gonzalez & Ana Isabel Beltrán-Velasco & J, 2022. "Sustainable Development Goals in the COVID-19 Pandemic: A Narrative Review," Sustainability, MDPI, vol. 14(13), pages 1-26, June.
    12. Aleksei Valentinovich Bogoviz & Svetlana Vladislavlevna Lobova & Yulia Vyacheslavovna Ragulina & Alexander Nikolaevich Alekseev, 2018. "Russia s Energy Security Doctrine: Addressing Emerging Challenges and Opportunities," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 1-6.
    13. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    14. Moghadam, Saman Salehi & Gholamian, Mohammad Reza & Zahedi, Rahim & Shaqaqifar, Maziar, 2024. "Designing a multi-purpose network of sustainable and closed-loop renewable energy supply chain, considering reliability and circular economy," Applied Energy, Elsevier, vol. 369(C).
    15. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    16. Guan, Shihui & Han, Mengyao & Wu, Xiaofang & Guan, ChengHe & Zhang, Bo, 2019. "Exploring energy-water-land nexus in national supply chains: China 2012," Energy, Elsevier, vol. 185(C), pages 1225-1234.
    17. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    18. Rahim Zahedi & Reza Eskandarpanah & Mohammadhossein Akbari & Nima Rezaei & Paniz Mazloumin & Omid Noudeh Farahani, 2022. "Development of a New Simulation Model for the Reservoir Hydropower Generation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2241-2256, May.
    19. Li, Peidu & Gao, Xiaoqing & Li, Zhenchao & Ye, Tiange & Zhou, Xiyin, 2022. "Effects of fishery complementary photovoltaic power plant on near-surface meteorology and energy balance," Renewable Energy, Elsevier, vol. 187(C), pages 698-709.
    20. Abdul, Daud & Wenqi, Jiang & Tanveer, Arsalan, 2022. "Prioritization of renewable energy source for electricity generation through AHP-VIKOR integrated methodology," Renewable Energy, Elsevier, vol. 184(C), pages 1018-1032.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1058-:d:739460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.