IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p1038-d738619.html
   My bibliography  Save this article

Silicium-Carbide-Based Isolated DC/DC Converter for Medium-Voltage Photovoltaic Power Plants

Author

Listed:
  • Minh Nhut Ngo

    (Laboratory of Intelligent Management of Electrical Network (LIRE), Department of Solar Technologies (DTS), LITEN, CEA Grenoble, 73370 Le Bourget du Lac, France
    Laboratory of Plasma and Energy Conversion (LAPLACE), University of Toulouse, 31000 Toulouse, France)

  • Philippe Ladoux

    (Laboratory of Plasma and Energy Conversion (LAPLACE), University of Toulouse, 31000 Toulouse, France)

  • Jérémy Martin

    (Laboratory of Intelligent Management of Electrical Network (LIRE), Department of Solar Technologies (DTS), LITEN, CEA Grenoble, 73370 Le Bourget du Lac, France)

  • Sébastien Sanchez

    (Laboratory of Plasma and Energy Conversion (LAPLACE), University of Toulouse, 31000 Toulouse, France
    ICAM, Toulouse Site, 31300 Toulouse, France)

Abstract

The production of large-scale photovoltaics (PVs) is becoming increasingly popular in the field of power generation; they require the construction of power plants of several hundred megawatts. Nevertheless, the construction of these PV power plants with conventional low-voltage (LV) conversion systems is not an appropriate technological path. Particularly, large cross-section cables, a high quantity of semiconductors, and the bulky layout of 50/60-Hz step-up transformers make the PV system less competitive in terms of energy efficiency and cost. To overcome these drawbacks, this paper introduces new PV plant topologies with an intermediate medium-voltage direct current (MVDC) collector that requires galvanic isolation for connecting the PV arrays. Then, the design of a power electronic transformer (PET) is proposed, implementing 1.7-kV and 3.3-kV silicium carbide (SiC) power modules. The study confirms that this converter allows the use of medium-frequency (MF) transformers with high power densities while maintaining high efficiency, which facilitates the implementation of isolated medium-voltage (MV) topologies for utility-scale PV power plants.

Suggested Citation

  • Minh Nhut Ngo & Philippe Ladoux & Jérémy Martin & Sébastien Sanchez, 2022. "Silicium-Carbide-Based Isolated DC/DC Converter for Medium-Voltage Photovoltaic Power Plants," Energies, MDPI, vol. 15(3), pages 1-17, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1038-:d:738619
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/1038/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/1038/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elyas Rakhshani & Kumars Rouzbehi & Adolfo J. Sánchez & Ana Cabrera Tobar & Edris Pouresmaeil, 2019. "Integration of Large Scale PV-Based Generation into Power Systems: A Survey," Energies, MDPI, vol. 12(8), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Lo Franco & Mattia Ricco & Riccardo Mandrioli & Gabriele Grandi, 2020. "Electric Vehicle Aggregate Power Flow Prediction and Smart Charging System for Distributed Renewable Energy Self-Consumption Optimization," Energies, MDPI, vol. 13(19), pages 1-25, September.
    2. Tomasz Sikorski & Michal Jasiński & Edyta Ropuszyńska-Surma & Magdalena Węglarz & Dominika Kaczorowska & Paweł Kostyla & Zbigniew Leonowicz & Robert Lis & Jacek Rezmer & Wilhelm Rojewski & Marian Sobi, 2020. "A Case Study on Distributed Energy Resources and Energy-Storage Systems in a Virtual Power Plant Concept: Technical Aspects," Energies, MDPI, vol. 13(12), pages 1-30, June.
    3. Kaloop, Mosbeh R. & Bardhan, Abidhan & Kardani, Navid & Samui, Pijush & Hu, Jong Wan & Ramzy, Ahmed, 2021. "Novel application of adaptive swarm intelligence techniques coupled with adaptive network-based fuzzy inference system in predicting photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Ninoslav Holjevac & Tomislav Baškarad & Josip Đaković & Matej Krpan & Matija Zidar & Igor Kuzle, 2021. "Challenges of High Renewable Energy Sources Integration in Power Systems—The Case of Croatia," Energies, MDPI, vol. 14(4), pages 1-20, February.
    5. Jaewan Suh & Minhan Yoon & Seungmin Jung, 2020. "Practical Application Study for Precision Improvement Plan for Energy Storage Devices Based on Iterative Methods," Energies, MDPI, vol. 13(3), pages 1-13, February.
    6. Mohammed Ali Khan & Ahteshamul Haque & Frede Blaabjerg & Varaha Satya Bharath Kurukuru & Huai Wang, 2021. "Intelligent Transition Control between Grid-Connected and Standalone Modes of Three-Phase Grid-Integrated Distributed Generation Systems," Energies, MDPI, vol. 14(13), pages 1-21, July.
    7. Jäger-Waldau, Arnulf & Kougias, Ioannis & Taylor, Nigel & Thiel, Christian, 2020. "How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    8. Hiyam Farhat & Coriolano Salvini, 2022. "Novel Gas Turbine Challenges to Support the Clean Energy Transition," Energies, MDPI, vol. 15(15), pages 1-17, July.
    9. Wieland Van De Sande & Omid Alavi & Philippe Nivelle & Jan D’Haen & Michaël Daenen, 2020. "Thermo-Mechanical Stress Comparison of a GaN and SiC MOSFET for Photovoltaic Applications," Energies, MDPI, vol. 13(22), pages 1-17, November.
    10. Aqachmar, Zineb & Campana, Pietro Elia & Bouhal, Tarik & El Qarnia, Hamid & Outzourhit, Abdelkader & Alami Ibnouelghazi, El & Mouak, Said & Aqachmar, Atman, 2022. "Electrification of Africa through CPV installations in small-scale industrial applications: Energetic, economic, and environmental analysis," Renewable Energy, Elsevier, vol. 197(C), pages 723-746.
    11. Pannee Suanpang & Pitchaya Jamjuntr & Kittisak Jermsittiparsert & Phuripoj Kaewyong, 2022. "Autonomous Energy Management by Applying Deep Q-Learning to Enhance Sustainability in Smart Tourism Cities," Energies, MDPI, vol. 15(5), pages 1-13, March.
    12. Antonio Moretti & Charalampos Pitas & George Christofi & Emmanuel Bué & Modesto Gabrieli Francescato, 2020. "Grid Integration as a Strategy of Med-TSO in the Mediterranean Area in the Framework of Climate Change and Energy Transition," Energies, MDPI, vol. 13(20), pages 1-22, October.
    13. Luis Fernando Grisales-Noreña & Andrés Alfonso Rosales-Muñoz & Oscar Danilo Montoya, 2023. "An Effective Power Dispatch of Photovoltaic Generators in DC Networks via the Antlion Optimizer," Energies, MDPI, vol. 16(3), pages 1-28, January.
    14. Yeuntae Yoo & Gilsoo Jang & Jeong-Hwan Kim & Iseul Nam & Minhan Yoon & Seungmin Jung, 2019. "Accuracy Improvement Method of Energy Storage Utilization with DC Voltage Estimation in Large-Scale Photovoltaic Power Plants," Energies, MDPI, vol. 12(20), pages 1-15, October.
    15. Minli Wang & Peihong Wang & Tao Zhang, 2022. "Evidential Extreme Learning Machine Algorithm-Based Day-Ahead Photovoltaic Power Forecasting," Energies, MDPI, vol. 15(11), pages 1-25, May.
    16. Yaser I. Alamin & Mensah K. Anaty & José Domingo Álvarez Hervás & Khalid Bouziane & Manuel Pérez García & Reda Yaagoubi & María del Mar Castilla & Merouan Belkasmi & Mohammed Aggour, 2020. "Very Short-Term Power Forecasting of High Concentrator Photovoltaic Power Facility by Implementing Artificial Neural Network," Energies, MDPI, vol. 13(13), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:1038-:d:738619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.