IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p456-d721178.html
   My bibliography  Save this article

A Convenient Method for the Accurate Calculation of Fin Efficiency of H-Type Fins Based on Linear Nomograms and Fitting Formulae

Author

Listed:
  • Yongshi Feng

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Xin Wu

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Cai Liang

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Zhongping Sun

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

Abstract

Fin efficiency, as a measure of the effectiveness of the heat transfer enhancement, is of great importance in studying the heat transfer performance of H-type finned tube banks. The fin efficiency of square fins is adopted by most researchers as an alternative to that of H-type fins, which can create certain errors in the fin efficiency of H-type fins. For this paper, the linear nomograms and fitting formulae of fin efficiency of H-type fins are obtained by the definition method of fin efficiency based on numerous numerical simulations, and the results calculated by this method are verified by experimental data. On this basis, the effects of three geometric parameters (slit width, fin height, and fin thickness) and two thermal parameters (surface heat transfer coefficient and fin thermal conductivity) on the fin efficiency of H-type fins are also investigated and compared to those of square fins. The results indicate that the fin efficiency of H-type fins increases with the increment of fin thickness and thermal conductivity, and decreases with the increase of slit width, fin height, and surface heat transfer coefficient. Accordingly, the linear nomograms and fitting formulae for the fin efficiency of H-type fins, which are well compatible with experimental data, can help to facilitate further theoretical research and engineering application.

Suggested Citation

  • Yongshi Feng & Xin Wu & Cai Liang & Zhongping Sun, 2022. "A Convenient Method for the Accurate Calculation of Fin Efficiency of H-Type Fins Based on Linear Nomograms and Fitting Formulae," Energies, MDPI, vol. 15(2), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:456-:d:721178
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/456/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/456/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mashhour A. Alazwari & Mohammad Reza Safaei, 2021. "Non-Isothermal Hydrodynamic Characteristics of a Nanofluid in a Fin-Attached Rotating Tube Bundle," Mathematics, MDPI, vol. 9(10), pages 1-24, May.
    2. Borunda, Mónica & Garduno-Ramirez, Raul & Jaramillo, O.A., 2019. "Optimal operation of a parabolic solar collector with twisted-tape insert by multi-objective genetic algorithms," Renewable Energy, Elsevier, vol. 143(C), pages 540-550.
    3. Sung-Hoon Seol & Sun-Geun Lee & Chang-Hyo Son & Ji-Hoon Yoon & In-Seob Eom & Young-Min Park & Jung-In Yoon, 2021. "Effects of Experimental Parameters on Condensation Heat Transfer in Plate Fin Heat Exchanger," Energies, MDPI, vol. 14(22), pages 1-18, November.
    4. Xinguo Sun & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Wang Zixiong & Pouyan Talebizadehsardari, 2021. "Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins," Energies, MDPI, vol. 14(21), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Shengyao & Lv, Laiquan & Rong, Yan & Zhou, Hao, 2024. "Experimental study on the thermal characteristics of a visualized shell-and-tube LHTES system at different endothermic and exothermic temperatures," Renewable Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Bian & Chen Wang & Yajun Wang & Run Qin & Shunyi Song & Wenhao Qu & Lu Xue & Xiaosong Zhang, 2021. "The Effect of Dynamic Cold Storage Packed Bed on Liquid Air Energy Storage in an Experiment Scale," Energies, MDPI, vol. 15(1), pages 1-20, December.
    2. Zecan Tu & Daniela Piccioni Koch & Nenad Sarunac & Martin Frank & Junkui Mao, 2021. "Thermal Analysis of a Solar External Receiver Tube with a Novel Component of Guide Vanes," Energies, MDPI, vol. 14(8), pages 1-21, April.
    3. Beyne, W. & T'Jollyn, I. & Lecompte, S. & Cabeza, L.F. & De Paepe, M., 2023. "Standardised methods for the determination of key performance indicators for thermal energy storage heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    4. Andrea Frazzica & Valeria Palomba & Angelo Freni, 2023. "Development and Experimental Characterization of an Innovative Tank-in-Tank Hybrid Sensible–Latent Thermal Energy Storage System," Energies, MDPI, vol. 16(4), pages 1-18, February.
    5. Jesus Fernando Hinojosa & Saul Fernando Moreno & Victor Manuel Maytorena, 2023. "Low-Temperature Applications of Phase Change Materials for Energy Storage: A Descriptive Review," Energies, MDPI, vol. 16(7), pages 1-39, March.
    6. Yang Xu & Hang Yin & Chen He & Yong Wei & Ming Cui & Zhang-Jing Zheng, 2022. "Structure Optimization of Longitudinal Rectangular Fins to Improve the Melting Performance of Phase Change Materials through Genetic Algorithm," Energies, MDPI, vol. 15(24), pages 1-21, December.
    7. Farqad T. Najim & Sami Kaplan & Hayder I. Mohammed & Anmar Dulaimi & Azher M. Abed & Raed Khalid Ibrahem & Fadhil Abbas Al-Qrimli & Mustafa Z. Mahmoud & Jan Awrejcewicz & Witold Pawłowski, 2022. "Evaluation of Melting Mechanism and Natural Convection Effect in a Triplex Tube Heat Storage System with a Novel Fin Arrangement," Sustainability, MDPI, vol. 14(17), pages 1-34, September.
    8. Fei Ma & Tianji Zhu & Yalin Zhang & Xinli Lu & Wei Zhang & Feng Ma, 2023. "A Review on Heat Transfer Enhancement of Phase Change Materials Using Fin Tubes," Energies, MDPI, vol. 16(1), pages 1-25, January.
    9. Mateusz Marcinkowski & Dawid Taler & Jan Taler & Katarzyna Węglarz, 2022. "Air-Side Nusselt Numbers and Friction Factor’s Individual Correlations of Finned Heat Exchangers," Energies, MDPI, vol. 15(15), pages 1-17, August.
    10. Jafaryar, M. & Sheikholeslami, M., 2022. "Efficacy of turbulator on performance of parabolic solar collector with using hybrid nanomaterial applying numerical method," Renewable Energy, Elsevier, vol. 198(C), pages 534-548.
    11. Janusz T. Cieśliński & Maciej Fabrykiewicz, 2023. "Thermal Energy Storage with PCMs in Shell-and-Tube Units: A Review," Energies, MDPI, vol. 16(2), pages 1-35, January.
    12. Monirul Islam Miskat & Protap Sarker & Hemal Chowdhury & Tamal Chowdhury & Md Salman Rahman & Nazia Hossain & Piyal Chowdhury & Sadiq M. Sait, 2023. "Current Scenario of Solar Energy Applications in Bangladesh: Techno-Economic Perspective, Policy Implementation, and Possibility of the Integration of Artificial Intelligence," Energies, MDPI, vol. 16(3), pages 1-27, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:456-:d:721178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.