Effectiveness Analysis of PMSM Motor Rolling Bearing Fault Detectors Based on Vibration Analysis and Shallow Neural Networks
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Marcin Skora & Pawel Ewert & Czeslaw T. Kowalski, 2019. "Selected Rolling Bearing Fault Diagnostic Methods in Wheel Embedded Permanent Magnet Brushless Direct Current Motors," Energies, MDPI, vol. 12(21), pages 1-19, November.
- Zia Ullah & Bilal Ahmad Lodhi & Jin Hur, 2020. "Detection and Identification of Demagnetization and Bearing Faults in PMSM Using Transfer Learning-Based VGG," Energies, MDPI, vol. 13(15), pages 1-17, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Daniel A. Magallón & Carlos E. Castañeda & Francisco Jurado & Onofre A. Morfin, 2021. "Design of a Neural Super-Twisting Controller to Emulate a Flywheel Energy Storage System," Energies, MDPI, vol. 14(19), pages 1-23, October.
- Kamila Jankowska & Mateusz Dybkowski, 2021. "A Current Sensor Fault Tolerant Control Strategy for PMSM Drive Systems Based on C ri Markers," Energies, MDPI, vol. 14(12), pages 1-18, June.
- Xiaohua Song & Jing Liu & Chaobo Chen & Song Gao, 2022. "Advanced Methods in Rotating Machines," Energies, MDPI, vol. 15(15), pages 1-3, July.
- Hisahide Nakamura & Keisuke Asano & Seiran Usuda & Yukio Mizuno, 2021. "A Diagnosis Method of Bearing and Stator Fault in Motor Using Rotating Sound Based on Deep Learning," Energies, MDPI, vol. 14(5), pages 1-15, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wagner Fontes Godoy & Daniel Morinigo-Sotelo & Oscar Duque-Perez & Ivan Nunes da Silva & Alessandro Goedtel & Rodrigo Henrique Cunha Palácios, 2020. "Estimation of Bearing Fault Severity in Line-Connected and Inverter-Fed Three-Phase Induction Motors," Energies, MDPI, vol. 13(13), pages 1-17, July.
- Hisahide Nakamura & Yukio Mizuno, 2022. "Diagnosis for Slight Bearing Fault in Induction Motor Based on Combination of Selective Features and Machine Learning," Energies, MDPI, vol. 15(2), pages 1-12, January.
- Xiaohua Song & Jing Liu & Chaobo Chen & Song Gao, 2022. "Advanced Methods in Rotating Machines," Energies, MDPI, vol. 15(15), pages 1-3, July.
- Yinquan Yu & Pan Zhao & Yong Hao & Dequan Zeng & Yiming Hu & Bo Zhang & Hui Yang, 2022. "Multi Objective Optimization of Permanent Magnet Synchronous Motor Based on Taguchi Method and PSO Algorithm," Energies, MDPI, vol. 16(1), pages 1-11, December.
More about this item
Keywords
diagnostics; permanent magnet synchronous motor; rolling bearing fault; neural networks;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:712-:d:490020. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.