IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p431-d719993.html
   My bibliography  Save this article

Optimal Configuration and Sizing of Seaport Microgrids including Renewable Energy and Cold Ironing—The Port of Aalborg Case Study

Author

Listed:
  • Nur Najihah Abu Bakar

    (Center for Research on Microgrids (CROM), AAU Energy, Aalborg University, 9220 Aalborg, Denmark
    Faculty of Electrical Engineering Technology, University Malaysia Perlis (UniMAP), Kampus Pauh Putra, Arau 02600, Perlis, Malaysia)

  • Josep M. Guerrero

    (Center for Research on Microgrids (CROM), AAU Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Juan C. Vasquez

    (Center for Research on Microgrids (CROM), AAU Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Najmeh Bazmohammadi

    (Center for Research on Microgrids (CROM), AAU Energy, Aalborg University, 9220 Aalborg, Denmark)

  • Muzaidi Othman

    (Faculty of Electrical Engineering Technology, University Malaysia Perlis (UniMAP), Kampus Pauh Putra, Arau 02600, Perlis, Malaysia)

  • Brian Dalby Rasmussen

    (Port Facility and Environment Management, Port of Aalborg, Langerak 19, 9220 Aalborg, Denmark)

  • Yusuf A. Al-Turki

    (Center of Research Excellence in Renewable Energy and Power Systems, Department of Electrical and Computer Engineering, Faculty of Engineering, K. A. CARE Energy Research and Innovation Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

Abstract

Microgrids are among the promising green transition technologies that will provide enormous benefits to the seaports to manage major concerns over energy crises, environmental challenges, and economic issues. However, creating a good design for the seaport microgrid is a challenging task, considering different objectives, constraints, and uncertainties involved. To ensure the optimal operation of the system, determining the right microgrid configuration and component size at minimum cost is a vital decision at the design stage. This paper aims to design a hybrid system for a seaport microgrid with optimally sized components. The selected case study is the Port of Aalborg, Denmark. The proposed grid-connected structure consists of renewable energy sources (photovoltaic system and wind turbines), an energy storage system, and cold ironing facilities. The seaport architecture is then optimized by utilizing HOMER to meet the maximum load demand by considering important parameters such as solar global horizontal irradiance, temperature, and wind resources. Finally, the best configuration is analyzed in terms of economic feasibility, energy reliability, and environmental impacts.

Suggested Citation

  • Nur Najihah Abu Bakar & Josep M. Guerrero & Juan C. Vasquez & Najmeh Bazmohammadi & Muzaidi Othman & Brian Dalby Rasmussen & Yusuf A. Al-Turki, 2022. "Optimal Configuration and Sizing of Seaport Microgrids including Renewable Energy and Cold Ironing—The Port of Aalborg Case Study," Energies, MDPI, vol. 15(2), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:431-:d:719993
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/431/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/431/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Di & Ma, Xu & Huang, Sen & Fu, Tao & Balducci, Patrick, 2020. "Stochastic optimal sizing of distributed energy resources for a cost-effective and resilient Microgrid," Energy, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali M. Jasim & Basil H. Jasim & Florin-Constantin Baiceanu & Bogdan-Constantin Neagu, 2023. "Optimized Sizing of Energy Management System for Off-Grid Hybrid Solar/Wind/Battery/Biogasifier/Diesel Microgrid System," Mathematics, MDPI, vol. 11(5), pages 1-34, March.
    2. Alexander Micallef & Josep M. Guerrero & Juan C. Vasquez, 2023. "New Horizons for Microgrids: From Rural Electrification to Space Applications," Energies, MDPI, vol. 16(4), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beraldi, Patrizia, 2024. "Green retailer: A stochastic bi-level approach to support investment decisions in sustainable energy systems," Operations Research Perspectives, Elsevier, vol. 12(C).
    2. Nazar, Mehrdad Setayesh & Jafarpour, Pourya & Shafie-khah, Miadreza & Catalão, João P.S., 2024. "Optimal planning of self-healing multi-carriers energy systems considering integration of smart buildings and parking lots energy resources," Energy, Elsevier, vol. 286(C).
    3. Hanif, Sarmad & Alam, M.J.E. & Roshan, Kini & Bhatti, Bilal A. & Bedoya, Juan C., 2022. "Multi-service battery energy storage system optimization and control," Applied Energy, Elsevier, vol. 311(C).
    4. Vitale, F. & Rispoli, N. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2021. "On the use of dynamic programming for optimal energy management of grid-connected reversible solid oxide cell-based renewable microgrids," Energy, Elsevier, vol. 225(C).
    5. Azimian, Mahdi & Amir, Vahid & Javadi, Saeid, 2020. "Economic and Environmental Policy Analysis for Emission-Neutral Multi-Carrier Microgrid Deployment," Applied Energy, Elsevier, vol. 277(C).
    6. Wu, Di & Ma, Xu & Balducci, Patrick & Bhatnagar, Dhruv, 2021. "An economic assessment of behind-the-meter photovoltaics paired with batteries on the Hawaiian Islands," Applied Energy, Elsevier, vol. 286(C).
    7. Pu, Yuchen & Li, Qi & Zou, Xueli & Li, Ruirui & Li, Luoyi & Chen, Weirong & Liu, Hong, 2021. "Optimal sizing for an integrated energy system considering degradation and seasonal hydrogen storage," Applied Energy, Elsevier, vol. 302(C).
    8. Muhyaddin Rawa & Abdullah Abusorrah & Yusuf Al-Turki & Saad Mekhilef & Mostafa H. Mostafa & Ziad M. Ali & Shady H. E. Abdel Aleem, 2020. "Optimal Allocation and Economic Analysis of Battery Energy Storage Systems: Self-Consumption Rate and Hosting Capacity Enhancement for Microgrids with High Renewable Penetration," Sustainability, MDPI, vol. 12(23), pages 1-25, December.
    9. Huang, Bowen & Huang, Sen & Ma, Xu & Katipamula, Srinivas & Wu, Di & Lutes, Robert, 2023. "Stochastic scheduling for commercial building cooling systems: considering uncertainty in zone temperature prediction," Applied Energy, Elsevier, vol. 346(C).
    10. Daniel Kitamura & Leonardo Willer & Bruno Dias & Tiago Soares, 2023. "Risk-Averse Stochastic Programming for Planning Hybrid Electrical Energy Systems: A Brazilian Case," Energies, MDPI, vol. 16(3), pages 1-16, February.
    11. Daniel Thompson & Gianluca Pescaroli, 2024. "Financing electricity resilience in local communities: a review of the literature," Environment Systems and Decisions, Springer, vol. 44(3), pages 740-762, September.
    12. Luis Fernando Grisales-Noreña & Bonie Johana Restrepo-Cuestas & Brandon Cortés-Caicedo & Jhon Montano & Andrés Alfonso Rosales-Muñoz & Marco Rivera, 2022. "Optimal Location and Sizing of Distributed Generators and Energy Storage Systems in Microgrids: A Review," Energies, MDPI, vol. 16(1), pages 1-30, December.
    13. Guodong Liu & Zhi Li & Yaosuo Xue & Kevin Tomsovic, 2022. "Microgrid Assisted Design for Remote Areas," Energies, MDPI, vol. 15(10), pages 1-23, May.
    14. Zhang, Xuehan & Son, Yongju & Cheong, Taesu & Choi, Sungyun, 2022. "Affine-arithmetic-based microgrid interval optimization considering uncertainty and battery energy storage system degradation," Energy, Elsevier, vol. 242(C).
    15. He, Shuaijia & Gao, Hongjun & Wang, Lingfeng & Xiang, Yingmeng & Liu, Junyong, 2020. "Distributionally robust planning for integrated energy systems incorporating electric-thermal demand response," Energy, Elsevier, vol. 213(C).
    16. Fawad Azeem & Ashfaq Ahmad & Taimoor Muzaffar Gondal & Jehangir Arshad & Ateeq Ur Rehman & Elsayed M. Tag Eldin & Muhammad Shafiq & Habib Hamam, 2022. "Load Management and Optimal Sizing of Special-Purpose Microgrids Using Two Stage PSO-Fuzzy Based Hybrid Approach," Energies, MDPI, vol. 15(17), pages 1-19, September.
    17. Roham Torabi & Álvaro Gomes & Fernando Morgado-Dias, 2023. "Electricity, Transportation, and Water Provision of 100% Renewable Energy for Remote Areas," Energies, MDPI, vol. 16(10), pages 1-20, May.
    18. Kassab, Fadi Agha & Celik, Berk & Locment, Fabrice & Sechilariu, Manuela & Liaquat, Sheroze & Hansen, Timothy M., 2024. "Optimal sizing and energy management of a microgrid: A joint MILP approach for minimization of energy cost and carbon emission," Renewable Energy, Elsevier, vol. 224(C).
    19. Jhony Guzman-Henao & Luis Fernando Grisales-Noreña & Bonie Johana Restrepo-Cuestas & Oscar Danilo Montoya, 2023. "Optimal Integration of Photovoltaic Systems in Distribution Networks from a Technical, Financial, and Environmental Perspective," Energies, MDPI, vol. 16(1), pages 1-19, January.
    20. Zakernezhad, Hamid & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Multi-level optimization framework for resilient distribution system expansion planning with distributed energy resources," Energy, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:431-:d:719993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.