IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9272-d995999.html
   My bibliography  Save this article

LCA of Mixed Generation Systems in Singapore: Implications for National Policy Making

Author

Listed:
  • Hsien H. Khoo

    (Institute of Sustainability for Chemicals, Energy and Environment, 1 Pesek Road, Jurong Island, Singapore 627833, Singapore)

Abstract

The decarbonization of electrical power generation systems is one of Singapore’s national political agendas to reduce national greenhouse emissions. LCA is applied to assess the trade-offs of national implementation of electricity generation from conventional fossil-fuel power plants, compared to low-carbon alternatives. The first aim of LCA is to quantify the emission inventory of national electrical generation within the geographical boundary of Singapore, and next to generate the potential environmental impacts of Global Warming Potential, Acidification, and Eutrophication. Various scenarios are tested for a projected diversity of fuel resource mixes considered for years 2030 and 2040 and a hypothetical scenario where 100% renewable energy is employed and imported as the nation transitions towards a low-carbon energy future. Further discussions on the additional LCA model indicators should be included for the potential of low-carbon hydrogen application.

Suggested Citation

  • Hsien H. Khoo, 2022. "LCA of Mixed Generation Systems in Singapore: Implications for National Policy Making," Energies, MDPI, vol. 15(24), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9272-:d:995999
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9272/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9272/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fthenakis, Vasilis M. & Kim, Hyung Chul, 2007. "Greenhouse-gas emissions from solar electric- and nuclear power: A life-cycle study," Energy Policy, Elsevier, vol. 35(4), pages 2549-2557, April.
    2. Halff, Antoine & Younes, Lara & Boersma, Tim, 2019. "The likely implications of the new IMO standards on the shipping industry," Energy Policy, Elsevier, vol. 126(C), pages 277-286.
    3. Trussart, Serge & Messier, Danielle & Roquet, Vincent & Aki, Shuichi, 2002. "Hydropower projects: a review of most effective mitigation measures," Energy Policy, Elsevier, vol. 30(14), pages 1251-1259, November.
    4. Garcia, Rita & Marques, Pedro & Freire, Fausto, 2014. "Life-cycle assessment of electricity in Portugal," Applied Energy, Elsevier, vol. 134(C), pages 563-572.
    5. Tan, Reginald B.H. & Wijaya, David & Khoo, Hsien H., 2010. "LCI (Life cycle inventory) analysis of fuels and electricity generation in Singapore," Energy, Elsevier, vol. 35(12), pages 4910-4916.
    6. Wagner, Hermann-Josef & Baack, Christoph & Eickelkamp, Timo & Epe, Alexa & Lohmann, Jessica & Troy, Stefanie, 2011. "Life cycle assessment of the offshore wind farm alpha ventus," Energy, Elsevier, vol. 36(5), pages 2459-2464.
    7. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jože Dimnik & Jelena Topić Božič & Ante Čikić & Simon Muhič, 2024. "Impacts of High PV Penetration on Slovenia’s Electricity Grid: Energy Modeling and Life Cycle Assessment," Energies, MDPI, vol. 17(13), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramirez, A.D. & Boero, A. & Rivela, B. & Melendres, A.M. & Espinoza, S. & Salas, D.A., 2020. "Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Orfanos, Neoptolemos & Mitzelos, Dimitris & Sagani, Angeliki & Dedoussis, Vassilis, 2019. "Life-cycle environmental performance assessment of electricity generation and transmission systems in Greece," Renewable Energy, Elsevier, vol. 139(C), pages 1447-1462.
    3. Kazemi, Abolghasem & Moreno, Jovita & Iribarren, Diego, 2023. "Economic optimization and comparative environmental assessment of natural gas combined cycle power plants with CO2 capture," Energy, Elsevier, vol. 277(C).
    4. Tsai, Bi-Huei & Chang, Chih-Jen & Chang, Chun-Hsien, 2016. "Elucidating the consumption and CO2 emissions of fossil fuels and low-carbon energy in the United States using Lotka–Volterra models," Energy, Elsevier, vol. 100(C), pages 416-424.
    5. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    6. Joshua M. Pearce, 2012. "Limitations of Nuclear Power as a Sustainable Energy Source," Sustainability, MDPI, vol. 4(6), pages 1-15, June.
    7. Li, Jinying & Li, Sisi & Wu, Fan, 2020. "Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory," Renewable Energy, Elsevier, vol. 155(C), pages 456-468.
    8. Catalina Ferat Toscano & Cecilia Martin-del-Campo & Gabriela Moeller-Chavez & Gabriel Leon de los Santos & Juan-Luis François & Daniel Revollo Fernandez, 2019. "Life Cycle Assessment of a Combined-Cycle Gas Turbine with a Focus on the Chemicals Used in Water Conditioning," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    9. Aditya Rachman & Usman Rianse & Mustarum Musaruddin & Kurniati Ornam, 2015. "Technical, Economical and Environmental Assessments of the Solar Photovoltaic Technology in Southeast Sulawesi, a Developing Province in Eastern Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 918-925.
    10. Norasikin Ahmad Ludin & Nurfarhana Alyssa Ahmad Affandi & Kathleen Purvis-Roberts & Azah Ahmad & Mohd Adib Ibrahim & Kamaruzzaman Sopian & Sufian Jusoh, 2021. "Environmental Impact and Levelised Cost of Energy Analysis of Solar Photovoltaic Systems in Selected Asia Pacific Region: A Cradle-to-Grave Approach," Sustainability, MDPI, vol. 13(1), pages 1-21, January.
    11. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    12. Orestis Schinas & Niklas Bergmann, 2021. "The Short-Term Cost of Greening the Global Fleet," Sustainability, MDPI, vol. 13(16), pages 1-32, August.
    13. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Rueda-Bayona, Juan Gabriel & Cabello Eras, Juan Jose & Chaparro, Tatiana R., 2022. "Impacts generated by the materials used in offshore wind technology on Human Health, Natural Environment and Resources," Energy, Elsevier, vol. 261(PA).
    15. Prehoda, Emily W. & Pearce, Joshua M., 2017. "Potential lives saved by replacing coal with solar photovoltaic electricity production in the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 710-715.
    16. Chaurey, A. & Kandpal, T.C., 2009. "Carbon abatement potential of solar home systems in India and their cost reduction due to carbon finance," Energy Policy, Elsevier, vol. 37(1), pages 115-125, January.
    17. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    18. Yu, Nan & Kang, Jin-Su & Chang, Chung-Chuan & Lee, Tai-Yong & Lee, Dong-Yup, 2016. "Robust economic optimization and environmental policy analysis for microgrid planning: An application to Taichung Industrial Park, Taiwan," Energy, Elsevier, vol. 113(C), pages 671-682.
    19. Dahlia Byles & Salman Mohagheghi, 2023. "Sustainable Power Grid Expansion: Life Cycle Assessment, Modeling Approaches, Challenges, and Opportunities," Sustainability, MDPI, vol. 15(11), pages 1-25, May.
    20. Howard, B. & Waite, M. & Modi, V., 2017. "Current and near-term GHG emissions factors from electricity production for New York State and New York City," Applied Energy, Elsevier, vol. 187(C), pages 255-271.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9272-:d:995999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.