IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8939-d984657.html
   My bibliography  Save this article

Electrified Process Heating in Textile Wet-Processing Industry: A Techno-Economic Analysis for China, Japan, and Taiwan

Author

Listed:
  • Ali Hasanbeigi

    (Global Efficiency Intelligence (GEI), 7901 4th St. N STE 4611, St. Petersburg, FL 33702, USA)

  • M. Jibran S. Zuberi

    (Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Rd., Berkeley, CA 94720, USA)

Abstract

The textile industry accounts for approximately 2% of global greenhouse gas emissions. There is a significant opportunity to decarbonize the textile industry by electrification of process heating where low- or zero-carbon electricity is used. Electrified process heating can be achieved through cross-cutting technologies without modifying the textile process equipment and/or through replacing the existing equipment with technologies that employ electromagnetic or resistance heating techniques for specific end-use applications. This paper aims to investigate the potential for electrification of process heating in the textile wet-processing industry in three of the top textile-producing and exporting regions in the world. To do this, two separate technology pathways, i.e., electrification through (a) industrial heat pumps and (b) textile end-use processes are developed and analyzed. The results show that the total potential final energy and CO 2 savings due to electrification in both scenarios could be substantially large due to the lower energy intensity of the electrified heating systems. Moreover, the costs per unit of textile production are found to be lower in the case of industrial heat pumps compared to other systems. It is concluded that wide-scale electrification of process heating in the textile wet-processing industry will require major changes to the electricity system and individual sites, and the coordination efforts among different stakeholders to plan these changes must be intensified.

Suggested Citation

  • Ali Hasanbeigi & M. Jibran S. Zuberi, 2022. "Electrified Process Heating in Textile Wet-Processing Industry: A Techno-Economic Analysis for China, Japan, and Taiwan," Energies, MDPI, vol. 15(23), pages 1-27, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8939-:d:984657
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8939/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8939/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2013. "Heat recovery with heat pumps in non-energy intensive industry: A detailed bottom-up model analysis in the French food & drink industry," Applied Energy, Elsevier, vol. 111(C), pages 489-504.
    2. Pulat, E. & Etemoglu, A.B. & Can, M., 2009. "Waste-heat recovery potential in Turkish textile industry: Case study for city of Bursa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 663-672, April.
    3. Marina, A. & Spoelstra, S. & Zondag, H.A. & Wemmers, A.K., 2021. "An estimation of the European industrial heat pump market potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hervas-Blasco, Estefanía & Pitarch, Miquel & Navarro-Peris, Emilio & Corberán, José M., 2017. "Optimal sizing of a heat pump booster for sanitary hot water production to maximize benefit for the substitution of gas boilers," Energy, Elsevier, vol. 127(C), pages 558-570.
    2. Xia, Xiaoxia & Liu, Zhipeng & Wang, Zhiqi & Sun, Tong & Zhang, Hualong & Zhang, Sifeng, 2023. "Thermo-economic-environmental optimization design of dual-loop organic Rankine cycle under fluctuating heat source temperature," Energy, Elsevier, vol. 264(C).
    3. Kandilli, Canan & Koclu, Aytac, 2011. "Assessment of the optimum operation conditions of a plate heat exchanger for waste heat recovery in textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4424-4431.
    4. Qilu Chen & Yutao Shi & Zhi Zhuang & Li Weng & Chengjun Xu & Jianqiu Zhou, 2021. "Numerical Analysis of Liquid–Liquid Heat Pipe Heat Exchanger Based on a Novel Model," Energies, MDPI, vol. 14(3), pages 1-19, January.
    5. Lorenzo Ciappi & Daniele Fiaschi & Giampaolo Manfrida & Simone Salvadori & Jacek Smolka & Lorenzo Talluri, 2019. "Heat Recovery for a Textile Stenter: CFD Analysis of Air Curtain Benefits," Energies, MDPI, vol. 12(3), pages 1-22, February.
    6. Cuce, Pinar Mert & Riffat, Saffa, 2015. "A comprehensive review of heat recovery systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 665-682.
    7. de Raad, Brendon & van Lieshout, Marit & Stougie, Lydia & Ramirez, Andrea, 2024. "Improving plant-level heat pump performance through process modifications," Applied Energy, Elsevier, vol. 358(C).
    8. Bartłomiej Bajan & Aldona Mrówczyńska-Kamińska & Walenty Poczta, 2020. "Economic Energy Efficiency of Food Production Systems," Energies, MDPI, vol. 13(21), pages 1-16, November.
    9. Dhayaneswaran, Y. & Ashok Kumar, L., 2014. "A study on current characteristics of induction motor while operating at its base frequency in textile industry," Energy, Elsevier, vol. 74(C), pages 340-345.
    10. Juyeong Seo & Haneul Mun & Jae Yun Shim & Seok Il Hong & Hee Dong Lee & Inkyu Lee, 2022. "Advanced Design of Integrated Heat Recovery and Supply System Using Heated Water Storage for Textile Dyeing Process," Energies, MDPI, vol. 15(19), pages 1-16, October.
    11. Gaigalis, Vygandas & Skema, Romualdas, 2015. "Analysis of the fuel and energy transition in Lithuanian industry and its sustainable development in 2005–2013 in compliance with the EU policy and strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 265-279.
    12. Laterre, Antoine & Dumont, Olivier & Lemort, Vincent & Contino, Francesco, 2024. "Extended mapping and systematic optimisation of the Carnot battery trilemma for sub-critical cycles with thermal integration," Energy, Elsevier, vol. 304(C).
    13. Karthikeyan, B. & Praveen Kumar, G. & Narayanan, Ramadas & R, Saravanan & Coronas, Alberto, 2024. "Thermo-economic optimization of hybrid solar-biomass driven organic rankine cycle integrated heat pump and PEM electrolyser for combined power, heating, and green hydrogen applications," Energy, Elsevier, vol. 299(C).
    14. Mota-Babiloni, Adrián & Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Molés, Francisco & Amat-Albuixech, Marta & Barragán-Cervera, Ángel, 2018. "Optimisation of high-temperature heat pump cascades with internal heat exchangers using refrigerants with low global warming potential," Energy, Elsevier, vol. 165(PB), pages 1248-1258.
    15. Philipp, Matthias & Schumm, Gregor & Peesel, Ron-Hendrik & Walmsley, Timothy G. & Atkins, Martin J. & Schlosser, Florian & Hesselbach, Jens, 2018. "Optimal energy supply structures for industrial food processing sites in different countries considering energy transitions," Energy, Elsevier, vol. 146(C), pages 112-123.
    16. Ngai, E.W.T. & To, Chester K.M. & Ching, Vincent S.M. & Chan, L.K. & Lee, Maggie C.M. & Choi, Y.S. & Chai, P.Y.F., 2012. "Development of the conceptual model of energy and utility management in textile processing: A soft systems approach," International Journal of Production Economics, Elsevier, vol. 135(2), pages 607-617.
    17. Bale, Catherine S.E. & Varga, Liz & Foxon, Timothy J., 2015. "Energy and complexity: New ways forward," Applied Energy, Elsevier, vol. 138(C), pages 150-159.
    18. Chae, Kyu-Jung & Ren, Xianghao, 2016. "Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system," Applied Energy, Elsevier, vol. 179(C), pages 565-574.
    19. Honma, Satoshi & Hu, Jin-Li, 2014. "Industry-level total-factor energy efficiency in developed countries: A Japan-centered analysis," Applied Energy, Elsevier, vol. 119(C), pages 67-78.
    20. Baboo Lesh Gowreesunker & Savvas A. Tassou, 2016. "The Impact of Renewable Energy Policies on the Adoption of Anaerobic Digesters with Farm-Fed Wastes in Great Britain," Energies, MDPI, vol. 9(12), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8939-:d:984657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.