IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8769-d979859.html
   My bibliography  Save this article

Distributed Secondary Control for Battery Management in a DC Microgrid

Author

Listed:
  • Alexander Paul Moya

    (Department of Electrical and Electronic Engineering, Universidad de las Fuerzas Armadas (ESPE), Sangolquí 171103, Ecuador)

  • Polo Josue Pazmiño

    (Department of Electrical and Electronic Engineering, Universidad de las Fuerzas Armadas (ESPE), Sangolquí 171103, Ecuador)

  • Jacqueline Rosario Llanos

    (Department of Electrical and Electronic Engineering, Universidad de las Fuerzas Armadas (ESPE), Sangolquí 171103, Ecuador)

  • Diego Ortiz-Villalba

    (Department of Electrical and Electronic Engineering, Universidad de las Fuerzas Armadas (ESPE), Sangolquí 171103, Ecuador)

  • Claudio Burgos

    (Institute of Engineering Sciences, Universidad de O’Higgins, Rancagua 2820000, Chile)

Abstract

This research presents the design and simulation of a distributed secondary control based on a consensus algorithm for the efficient management of an isolated DC microgrid (MG-DC) that secures the distribution of active power according to the capacities of each storage unit, reducing duty cycles and extending its life cycle. The balance of powers is fulfilled through a photovoltaic (PV) generation unit and an energy storage system (ESS) based on batteries. The PV Boost converter has a maximum power point tracking (MPPT) controller based on the perturb and observe (P & O) method. In contrast, a Buck–Boost converter is integrated into each battery, which is bidirectionally controlled through a local controller and a primary droop control that balances the required power at the loads. It produces a voltage deviation on the DC bus. To compensate for this deviation, a distributed secondary control strategy based on consensus is proposed to restore the voltage while managing the power sharing according to the capacities of each battery. It allows for the improvement of its life cycle, which is shown in the state of charge (SOC) index, thus extending its life cycle. The controllers are evaluated for solar re-source changes, load changes, and different storage capacities.

Suggested Citation

  • Alexander Paul Moya & Polo Josue Pazmiño & Jacqueline Rosario Llanos & Diego Ortiz-Villalba & Claudio Burgos, 2022. "Distributed Secondary Control for Battery Management in a DC Microgrid," Energies, MDPI, vol. 15(22), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8769-:d:979859
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8769/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8769/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arcos-Aviles, Diego & Pascual, Julio & Guinjoan, Francesc & Marroyo, Luis & Sanchis, Pablo & Marietta, Martin P., 2017. "Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting," Applied Energy, Elsevier, vol. 205(C), pages 69-84.
    2. Pata, Ugur Korkut, 2021. "Linking renewable energy, globalization, agriculture, CO2 emissions and ecological footprint in BRIC countries: A sustainability perspective," Renewable Energy, Elsevier, vol. 173(C), pages 197-208.
    3. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2021. "Determinants of renewable energy consumption: Importance of democratic institutions," Renewable Energy, Elsevier, vol. 179(C), pages 75-83.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan Andrés Basantes & Daniela Estefanía Paredes & Jacqueline Rosario Llanos & Diego Edmundo Ortiz & Claudio Danilo Burgos, 2023. "Energy Management System (EMS) Based on Model Predictive Control (MPC) for an Isolated DC Microgrid," Energies, MDPI, vol. 16(6), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olanrewaju Lasabi & Andrew Swanson & Leigh Jarvis & Anuoluwapo Aluko & Arman Goudarzi, 2024. "Coordinated Hybrid Approach Based on Firefly Algorithm and Particle Swarm Optimization for Distributed Secondary Control and Stability Analysis of Direct Current Microgrids," Sustainability, MDPI, vol. 16(3), pages 1-28, January.
    2. Armin Razmjoo & Mostafa Rezaei & Seyedali Mirjalili & Meysam Majidi Nezhad & Giuseppe Piras, 2021. "Development of Sustainable Energy Use with Attention to Fruitful Policy," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    3. Yolcan, Oguz Ozan, 2023. "World energy outlook and state of renewable energy: 10-Year evaluation," Innovation and Green Development, Elsevier, vol. 2(4).
    4. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    5. Wei, Yu & Wang, Yizhi & Vigne, Samuel A. & Ma, Zhenyu, 2023. "Alarming contagion effects: The dangerous ripple effect of extreme price spillovers across crude oil, carbon emission allowance, and agriculture futures markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    6. Wen Fan & Qing Liu & Mingyu Wang, 2021. "Bi-Level Multi-Objective Optimization Scheduling for Regional Integrated Energy Systems Based on Quantum Evolutionary Algorithm," Energies, MDPI, vol. 14(16), pages 1-15, August.
    7. Rodriguez, Mauricio & Arcos-Aviles, Diego & Guinjoan, Francesc, 2024. "Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador," Applied Energy, Elsevier, vol. 357(C).
    8. Doppy Roy Nendissa & Atiek Iriany & Jeky Melkianus Sui & Nikmatul Khoiriyah & Onuma Suphattanakul & Worakamol Wisetsri, 2022. "The Role of Renewable and Nonrenewable Energy on Agricultural Economics in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 12(3), pages 352-360, May.
    9. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    10. Yusuf A. Alturki & Abdullah Ali Alhussainy & Sultan M. Alghamdi & Muhyaddin Rawa, 2024. "A Novel Point of Common Coupling Direct Power Control Method for Grid Integration of Renewable Energy Sources: Performance Evaluation among Power Quality Phenomena," Energies, MDPI, vol. 17(20), pages 1-18, October.
    11. Zhou, Hou Sheng & Passey, Rob & Bruce, Anna & Sproul, Alistair B., 2021. "A case study on the behaviour of residential battery energy storage systems during network demand peaks," Renewable Energy, Elsevier, vol. 180(C), pages 712-724.
    12. Sitka, Andrzej & Szulc, Piotr & Smykowski, Daniel & Jodkowski, Wiesław, 2021. "Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier," Renewable Energy, Elsevier, vol. 175(C), pages 422-429.
    13. Talan, Amogh & Rao, Amar & Sharma, Gagan Deep & Apostu, Simona-Andreea & Abbas, Shujaat, 2023. "Transition towards clean energy consumption in G7: Can financial sector, ICT and democracy help?," Resources Policy, Elsevier, vol. 82(C).
    14. Shen Wang & Guohe Huang & Yurui Fan, 2018. "A Multistage Distribution-Generation Planning Model for Clean Power Generation under Multiple Uncertainties—A Case Study of Urumqi, China," Sustainability, MDPI, vol. 10(9), pages 1-30, September.
    15. Pata, Ugur Korkut & Ertugrul, Hasan Murat, 2023. "Do the Kyoto Protocol, geopolitical risks, human capital and natural resources affect the sustainability limit? A new environmental approach based on the LCC hypothesis," Resources Policy, Elsevier, vol. 81(C).
    16. Shang, Yunfeng & Han, Ding & Gozgor, Giray & Mahalik, Mantu Kumar & Sahoo, Bimal Kishore, 2022. "The impact of climate policy uncertainty on renewable and non-renewable energy demand in the United States," Renewable Energy, Elsevier, vol. 197(C), pages 654-667.
    17. Tang, Yi, 2024. "Nexus of natural resource depletion, corruption and financial inclusion on bio-diversity loss: A systematic study on corrupt economies," Resources Policy, Elsevier, vol. 92(C).
    18. Mergoni, Anna & Dipierro, Anna Rita & Colamartino, Chiara, 2024. "European agricultural sector: The tortuous path across efficiency, sustainability and environmental risk," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    19. Salma Karim & Md. Qamruzzaman & Ishrat Jahan, 2023. "Nexus between Government Debt, Globalization, FDI, Renewable Energy, and Institutional Quality in Bangladesh," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 443-456, May.
    20. Juan David Alonso-Sanabria & Luis Fernando Melo-Velandia & Daniel Parra-Amado, 2023. "Connecting the Dots: Renewable Energy, Economic Growth, Reforestation, and Greenhouse Gas Emissions in Colombia," Borradores de Economia 1252, Banco de la Republica de Colombia.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8769-:d:979859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.