IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8582-d974802.html
   My bibliography  Save this article

A Study of Neural Network Framework for Power Generation Prediction of a Solar Power Plant

Author

Listed:
  • Jeehong Kim

    (Department of Renewable Energy Engineering, Jeonju Vision College of University, Jeonju 55069, Republic of Korea)

  • Seok-ho Lee

    (Department of Renewable Energy Engineering, Jeonju Vision College of University, Jeonju 55069, Republic of Korea)

  • Kil To Chong

    (Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
    Advances Electronics and Information Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea)

Abstract

In the process of creating a prediction model using artificial intelligence by utilizing a deep neural network, it is of utmost significance to know the amount of insolation that has an absolute effect on the quantity of power generation of a solar cell. To predict the power generation quantity of a solar power plant, a deep neural network requires previously accumulated power generation data of a power plant. However, if there is no equipment to measure solar radiation in the internal facilities of the power plant and if there is no record of the existence of solar radiation in the past data, it is inevitable to obtain the solar radiation information of the nearest point in an effort to accurately predict the quantity of power generation. The site conditions of the power plant are affected by the geographical topography which acts as a stumbling block while anticipating favorable weather conditions. In this paper, we introduce a method to solve these problems and predict the quantity of power generation by modeling the power generation characteristics of a power plant using a neural network. he average of the error between the actual quantity and the predicted quantity for the same period was 1.99, that represents the predictive model is efficient to be used in real-time.

Suggested Citation

  • Jeehong Kim & Seok-ho Lee & Kil To Chong, 2022. "A Study of Neural Network Framework for Power Generation Prediction of a Solar Power Plant," Energies, MDPI, vol. 15(22), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8582-:d:974802
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8582/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8582/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edna S. Solano & Payman Dehghanian & Carolina M. Affonso, 2022. "Solar Radiation Forecasting Using Machine Learning and Ensemble Feature Selection," Energies, MDPI, vol. 15(19), pages 1-18, September.
    2. Aleksander Radovan & Viktor Šunde & Danijel Kučak & Željko Ban, 2021. "Solar Irradiance Forecast Based on Cloud Movement Prediction," Energies, MDPI, vol. 14(13), pages 1-25, June.
    3. Konduru Sudharshan & C. Naveen & Pradeep Vishnuram & Damodhara Venkata Siva Krishna Rao Kasagani & Benedetto Nastasi, 2022. "Systematic Review on Impact of Different Irradiance Forecasting Techniques for Solar Energy Prediction," Energies, MDPI, vol. 15(17), pages 1-39, August.
    4. Ishaque, Kashif & Salam, Zainal & Mekhilef, Saad & Shamsudin, Amir, 2012. "Parameter extraction of solar photovoltaic modules using penalty-based differential evolution," Applied Energy, Elsevier, vol. 99(C), pages 297-308.
    5. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    6. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen-Chang Tsai & Chia-Sheng Tu & Chih-Ming Hong & Whei-Min Lin, 2023. "A Review of State-of-the-Art and Short-Term Forecasting Models for Solar PV Power Generation," Energies, MDPI, vol. 16(14), pages 1-30, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    2. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    3. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Shufu Yuan & Yuzhang Ji & Yongxu Chen & Xin Liu & Weijun Zhang, 2023. "An Improved Differential Evolution for Parameter Identification of Photovoltaic Models," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    5. Jordehi, A. Rezaee, 2016. "Maximum power point tracking in photovoltaic (PV) systems: A review of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1127-1138.
    6. Adeel, Muhammad & Hassan, Ahmad Kamal & Sher, Hadeed Ahmed & Murtaza, Ali Faisal, 2021. "A grade point average assessment of analytical and numerical methods for parameter extraction of a practical PV device," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    7. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    8. Madi, Saida & Kheldoun, Aissa, 2017. "Bond graph based modeling for parameter identification of photovoltaic module," Energy, Elsevier, vol. 141(C), pages 1456-1465.
    9. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    10. Chen, Zhicong & Wu, Lijun & Lin, Peijie & Wu, Yue & Cheng, Shuying, 2016. "Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy," Applied Energy, Elsevier, vol. 182(C), pages 47-57.
    11. Efstratios Batzelis, 2019. "Non-Iterative Methods for the Extraction of the Single-Diode Model Parameters of Photovoltaic Modules: A Review and Comparative Assessment," Energies, MDPI, vol. 12(3), pages 1-26, January.
    12. Tamer Khatib & Dhiaa Halboot Muhsen, 2020. "Optimal Sizing of Standalone Photovoltaic System Using Improved Performance Model and Optimization Algorithm," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    13. Chin, Vun Jack & Salam, Zainal, 2019. "A New Three-point-based Approach for the Parameter Extraction of Photovoltaic Cells," Applied Energy, Elsevier, vol. 237(C), pages 519-533.
    14. Zhou, Junfeng & Zhang, Yanhui & Zhang, Yubo & Shang, Wen-Long & Yang, Zhile & Feng, Wei, 2022. "Parameters identification of photovoltaic models using a differential evolution algorithm based on elite and obsolete dynamic learning," Applied Energy, Elsevier, vol. 314(C).
    15. Li, Yuanliang & Ding, Kun & Zhang, Jingwei & Chen, Fudong & Chen, Xiang & Wu, Jiabing, 2019. "A fault diagnosis method for photovoltaic arrays based on fault parameters identification," Renewable Energy, Elsevier, vol. 143(C), pages 52-63.
    16. Martin Ćalasan & Dražen Jovanović & Vesna Rubežić & Saša Mujović & Slobodan Đukanović, 2019. "Estimation of Single-Diode and Two-Diode Solar Cell Parameters by Using a Chaotic Optimization Approach," Energies, MDPI, vol. 12(21), pages 1-14, November.
    17. Wang, Gang & Zhao, Ke & Shi, Jiangtao & Chen, Wei & Zhang, Haiyang & Yang, Xinsheng & Zhao, Yong, 2017. "An iterative approach for modeling photovoltaic modules without implicit equations," Applied Energy, Elsevier, vol. 202(C), pages 189-198.
    18. Wang, Gang & Zhao, Ke & Qiu, Tian & Yang, Xinsheng & Zhang, Yong & Zhao, Yong, 2016. "The error analysis of the reverse saturation current of the diode in the modeling of photovoltaic modules," Energy, Elsevier, vol. 115(P1), pages 478-485.
    19. Wu, Lijun & Chen, Zhicong & Long, Chao & Cheng, Shuying & Lin, Peijie & Chen, Yixiang & Chen, Huihuang, 2018. "Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm," Applied Energy, Elsevier, vol. 232(C), pages 36-53.
    20. Chen, Zhicong & Yu, Hui & Luo, Linlu & Wu, Lijun & Zheng, Qiao & Wu, Zhenhui & Cheng, Shuying & Lin, Peijie, 2021. "Rapid and accurate modeling of PV modules based on extreme learning machine and large datasets of I-V curves," Applied Energy, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8582-:d:974802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.