IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8086-d958991.html
   My bibliography  Save this article

Hard Carbon Reprising Porous Morphology Derived from Coconut Sheath for Sodium-Ion Battery

Author

Listed:
  • Meenatchi Thenappan

    (#120, Energy Materials Lab, Department of Physics, Science Block, Alagappa University, Karaikudi 630003, Tamil Nadu, India)

  • Subadevi Rengapillai

    (#120, Energy Materials Lab, Department of Physics, Science Block, Alagappa University, Karaikudi 630003, Tamil Nadu, India)

  • Sivakumar Marimuthu

    (#120, Energy Materials Lab, Department of Physics, Science Block, Alagappa University, Karaikudi 630003, Tamil Nadu, India)

Abstract

Seeking effective energy technology has become a herculean task in today’s world. Sodium-ion batteries play a vital role in the present energy tech market due to their entrancing electrochemical properties and this work is a breakthrough for developing sodium-ion batteries. As per recent reports, the preparation of anode materials seems to be very tedious in the realm of sodium-ion batteries. To remedy these issues, this work enlightens the preparation of hard carbon (HC) derived from coconut sheath (CS) by a pyrolysis process with different activating agents (KOH, NaOH, ZnCl 2 ) and employed as an anode material for Sodium-ion batteries (SIBs). The prepared anode material was characterized for its thermal, structural, functional, morphological, and electrochemical properties. Additionally, the surface area and pore diameter of the as-prepared anode material was studied by nitrogen adsorption and desorption isotherm methods. The coconut sheath-derived hard carbon (CSHC) anode material delivered an initial charge capacity of 141 mAh g −1 , 153 mAh g −1 , and 162 mAh g −1 at a 1 C rate with a coulombic efficiency over 98.8%, 99.3%, and 99.5%, even after 100 cycles, respectively.

Suggested Citation

  • Meenatchi Thenappan & Subadevi Rengapillai & Sivakumar Marimuthu, 2022. "Hard Carbon Reprising Porous Morphology Derived from Coconut Sheath for Sodium-Ion Battery," Energies, MDPI, vol. 15(21), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8086-:d:958991
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8086/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8086/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jakub Lach & Kamil Wróbel & Justyna Wróbel & Andrzej Czerwiński, 2021. "Applications of Carbon in Rechargeable Electrochemical Power Sources: A Review," Energies, MDPI, vol. 14(9), pages 1-29, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meenatchi Thenappan & Kouthaman Mathiyalagan & Mozaffar Abdollahifar & Subadevi Rengapillai & Sivakumar Marimuthu, 2023. "Structural and Electrochemical Properties of Musa acuminata Fiber Derived Hard Carbon as Anodes of Sodium-Ion Batteries," Energies, MDPI, vol. 16(2), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesca De Giorgio & Mattia Gaboardi & Lara Gigli & Sergio Brutti & Catia Arbizzani, 2022. "Deciphering the Interplay between Binders and Electrolytes on the Performance of Li 4 Ti 5 O 12 Electrodes for Li-Ion Batteries," Energies, MDPI, vol. 15(12), pages 1-13, June.
    2. Kuan-Ching Lee & Mitchell Shyan Wei Lim & Zhong-Yun Hong & Siewhui Chong & Timm Joyce Tiong & Guan-Ting Pan & Chao-Ming Huang, 2021. "Coconut Shell-Derived Activated Carbon for High-Performance Solid-State Supercapacitors," Energies, MDPI, vol. 14(15), pages 1-11, July.
    3. Francesca Lionetto & Sonia Bagheri & Claudio Mele, 2021. "Sustainable Materials from Fish Industry Waste for Electrochemical Energy Systems," Energies, MDPI, vol. 14(23), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8086-:d:958991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.