IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7737-d947357.html
   My bibliography  Save this article

Synthesis of Biodiesel via Interesterification Reaction of Calophyllum inophyllum Seed Oil and Ethyl Acetate over Lipase Catalyst: Experimental and Surface Response Methodology Analysis

Author

Listed:
  • Ratna Dewi Kusumaningtyas

    (Chemical Engineering Department, Faculty of Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, Semarang 50229, Indonesia)

  • Normaliza Normaliza

    (Chemical Engineering Department, Faculty of Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, Semarang 50229, Indonesia)

  • Elva Dianis Novia Anisa

    (Chemical Engineering Department, Faculty of Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, Semarang 50229, Indonesia)

  • Haniif Prasetiawan

    (Chemical Engineering Department, Faculty of Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, Semarang 50229, Indonesia)

  • Dhoni Hartanto

    (Chemical Engineering Department, Faculty of Engineering, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, Semarang 50229, Indonesia)

  • Harumi Veny

    (School of Chemical Engineering, College of Engineering, Universiti Teknologi Mara (UiTM), Shah Alam 40450, Selangor, Malaysia)

  • Fazlena Hamzah

    (School of Chemical Engineering, College of Engineering, Universiti Teknologi Mara (UiTM), Shah Alam 40450, Selangor, Malaysia)

  • Miradatul Najwa Muhd Rodhi

    (School of Chemical Engineering, College of Engineering, Universiti Teknologi Mara (UiTM), Shah Alam 40450, Selangor, Malaysia)

Abstract

Biodiesel is increasingly being considered as an alternative to the fossil fuel as it is renewable, nontoxic, biodegradable, and feasible for mass production. Biodiesel can be produced from various types of vegetable oils. Calophyllum inophyllum seed oil (CSO) is among the prospective nonedible vegetable oils considered as a raw material for biodiesel synthesis. The most common process of the biodiesel manufacturing is the transesterification of vegetable oils which results in glycerol as a by-product. Thus, product purification is necessary. In this work, an alternative route to biodiesel synthesis through interesterification reaction of vegetable oil and ethyl acetate was conducted. By replacing alcohol with ethyl acetate, triacetin was produced as a side product rather than glycerol. Triacetin can be used as a fuel additive to increase the octane number of the fuel. Therefore, triacetin separation from biodiesel products is needless. The interesterification reaction is catalyzed by an alkaline catalyst or by a lipase enzyme. In this study, biodiesel synthesis was carried out using a lipase enzyme since it is a green and sustainable catalyst. The interesterification reaction of CSO with ethyl acetate in the presence of a lipase catalyst was conducted using the molar ratio of CSO and ethyl acetate of 1:3. The reaction time, lipase catalyst concentration, and reaction temperature were varied at 1, 2, 3, 4, 5 h, 10%,15%, 20%, and 30 °C, 40 °C, 50 °C, 60 °C, respectively. The experimental results were also analyzed using response surface methodology (RSM) with the Box–Behnken design (BBD) model on Design Expert software. Data processing using RSM revealed that the highest conversion within the studied parameter range was 41.46%, obtained at a temperature reaction of 44.43 °C, a reaction time of 5 h, and a lipase catalyst concentration of 20%.

Suggested Citation

  • Ratna Dewi Kusumaningtyas & Normaliza Normaliza & Elva Dianis Novia Anisa & Haniif Prasetiawan & Dhoni Hartanto & Harumi Veny & Fazlena Hamzah & Miradatul Najwa Muhd Rodhi, 2022. "Synthesis of Biodiesel via Interesterification Reaction of Calophyllum inophyllum Seed Oil and Ethyl Acetate over Lipase Catalyst: Experimental and Surface Response Methodology Analysis," Energies, MDPI, vol. 15(20), pages 1-14, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7737-:d:947357
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7737/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7737/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luqman Razzaq & Muhammad Mujtaba Abbas & Sajjad Miran & Salman Asghar & Saad Nawaz & Manzoore Elahi M. Soudagar & Nabeel Shaukat & Ibham Veza & Shahid Khalil & Anas Abdelrahman & Muhammad A. Kalam, 2022. "Response Surface Methodology and Artificial Neural Networks-Based Yield Optimization of Biodiesel Sourced from Mixture of Palm and Cotton Seed Oil," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    2. Hoora Mazaheri & Hwai Chyuan Ong & Zeynab Amini & Haji Hassan Masjuki & M. Mofijur & Chia Hung Su & Irfan Anjum Badruddin & T.M. Yunus Khan, 2021. "An Overview of Biodiesel Production via Calcium Oxide Based Catalysts: Current State and Perspective," Energies, MDPI, vol. 14(13), pages 1-23, July.
    3. Sayyed, Siraj & Das, Randip Kumar & Kulkarni, Kishor, 2022. "Experimental investigation for evaluating the performance and emission characteristics of DICI engine fueled with dual biodiesel-diesel blends of Jatropha, Karanja, Mahua, and Neem," Energy, Elsevier, vol. 238(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wancura, João H.C. & Brondani, Michel & dos Santos, Maicon S.N. & Oro, Carolina E.D. & Wancura, Guilherme C. & Tres, Marcus V. & Oliveira, J. Vladimir, 2023. "Demystifying the enzymatic biodiesel: How lipases are contributing to its technological advances," Renewable Energy, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nahas, Lea & Dahdah, Eliane & Aouad, Samer & El Khoury, Bilal & Gennequin, Cedric & Abi Aad, Edmond & Estephane, Jane, 2023. "Highly efficient scallop seashell-derived catalyst for biodiesel production from sunflower and waste cooking oils: Reaction kinetics and effect of calcination temperature studies," Renewable Energy, Elsevier, vol. 202(C), pages 1086-1095.
    2. Karishma, Shaik Mullan & Rajak, Upendra & Naik, B. Kiran & Dasore, Abhishek & Konijeti, Ramakrishna, 2022. "Performance and emission characteristics assessment of compression ignition engine fuelled with the blends of novel antioxidant catechol-daok biodiesel," Energy, Elsevier, vol. 245(C).
    3. Elgharbawy, Abdallah S. & Ali, Rehab M., 2022. "Techno-economic assessment of the biodiesel production using natural minerals rocks as a heterogeneous catalyst via conventional and ultrasonic techniques," Renewable Energy, Elsevier, vol. 191(C), pages 161-175.
    4. Kolakoti, Aditya & Koten, Hasan, 2022. "Effect of supercharging in neat biodiesel fuelled naturally aspirated diesel engine combustion, vibration and emission analysis," Energy, Elsevier, vol. 260(C).
    5. repec:zib:zbjtin:v:2:y:2022:i:2:p:52-61 is not listed on IDEAS
    6. Torkzaban, Sama & Feyzi, Mostafa & norouzi, Leila, 2022. "A novel robust CaO/ZnFe2O4 hollow magnetic microspheres heterogenous catalyst for synthesis biodiesel from waste frying sunflower oil," Renewable Energy, Elsevier, vol. 200(C), pages 996-1007.
    7. Xiong, Jianyun & Zhang, Shumei & Fan, Liangliang & Zhang, Qi & Cui, Xian & Ke, Linyao & Zeng, Yuan & Wu, Qiuhao & Cobb, Kirk & Liu, Yuhuan & Ruan, Roger & Wang, Yunpu, 2023. "Production of bio-oil from waste cooking oil via microwave-assisted pyrolysis in the presence of waste eggshell CaO and HZSM-5: Process optimization and catalyst lifetime exploration," Energy, Elsevier, vol. 283(C).
    8. Giwa, Solomon O. & Taziwa, Raymond T. & Sharifpur, Mohsen, 2023. "Dependence of composition-based approaches on hybrid biodiesel fuel properties prediction using artificial neural network and random tree algorithms," Renewable Energy, Elsevier, vol. 218(C).
    9. Asokan, M.A. & Prabu, S. Senthur & Khalife, Esmail & Sanjey, K.A. & Prathiba, S., 2024. "Vibration analysis using wavelet transformation technique and performance characteristics of a diesel engine fueled with tamarind biodiesel-diesel blends and diverse additives," Energy, Elsevier, vol. 294(C).
    10. Impha Yalagudige Dharmegowda & Lakshmidevamma Madarakallu Muniyappa & Parameshwara Siddalingaiah & Ajith Bintravalli Suresh & Manjunath Patel Gowdru Chandrashekarappa & Chander Prakash, 2022. "MgO Nano-Catalyzed Biodiesel Production from Waste Coconut Oil and Fish Oil Using Response Surface Methodology and Grasshopper Optimization," Sustainability, MDPI, vol. 14(18), pages 1-23, September.
    11. Liu, Junheng & Wu, Pengcheng & Ji, Qian & Sun, Ping & Wang, Pan & Meng, Zhongwei & Ma, Hongjie, 2022. "Experimental study on effects of pilot injection strategy on combustion and emission characteristics of diesel/methanol dual-fuel engine under low load," Energy, Elsevier, vol. 247(C).
    12. Hwai Chyuan Ong & Adi Kusmayadi & Nor Aishah Saidina Amin, 2023. "Biomass Energy for Environmental Sustainability," Energies, MDPI, vol. 16(7), pages 1-3, March.
    13. Zhenghui Weng & Yuanzhe Tao & Haotian Fei & Weishan Deng & Yiyao Chen & Zhiqi Zhao & Xiaojiang Liang & Yong Nie, 2023. "Green Production of Biodiesel from High Acid Value Oil via Glycerol Esterification and Transesterification Catalyzed by Nano Hydrated Eggshell-Derived CaO," Energies, MDPI, vol. 16(18), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7737-:d:947357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.