IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7723-d947060.html
   My bibliography  Save this article

Scientometric Review and Thematic Areas for the Research Trends on Marine Hoses

Author

Listed:
  • Chiemela Victor Amaechi

    (School of Engineering, Lancaster University, Bailrigg, Lancaster LA1 4YR, UK
    Standards Organisation of Nigeria (SON), 52 Lome Crescent, Wuse Zone 7, Abuja 900287, Nigeria)

  • Idris Ahmed Ja’e

    (Department of Civil Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia
    Department of Civil Engineering, Ahmadu Bello University, Zaria 810107, Nigeria)

  • Ahmed Reda

    (School of Civil and Mechanical Engineering, Curtin University, Bentley, WA 6102, Australia
    Department of Engineering, Qatar Energy, Doha 3212, Qatar)

  • Xuanze Ju

    (Engineering Company, Offshore Oil Engineering Co., Ltd., Tianjin 300451, China)

Abstract

For over three (3) decades, there has been an increase in research on energy sources from the production of oil using flexible marine risers, such as marine hoses. Marine hoses are conduits for special use as rubberized structures with hybrid polymer composites for offshore platforms in the oil and gas industry. This scientometric study uses qualitative, quantitative, and computational approaches. Data were retrieved using a research methodology that was created for this study using the SCOPUS and Web of Science (WoS) databases. This study provides a bibliometric literature review on marine hoses with an emphasis on the advancements made in the field from recent developments, geographical activity by countries, authorship histories, partnerships, funding sources, affiliations, co-occurrences, and potential research areas. The study found that the USA had the most publications, but there were fewer co-occurrences with connections outside the cluster. Due to the difficulty of adaptation, acceptability, qualification, and deployment of marine hoses in the offshore marine industry, this topic contains more conference papers than journal papers. Therefore, more funding sources and collaborations on marine hoses are required to advance the research. This study makes a contribution to scholarship on advances made in petroleum exploration and production for (un)loading hoses.

Suggested Citation

  • Chiemela Victor Amaechi & Idris Ahmed Ja’e & Ahmed Reda & Xuanze Ju, 2022. "Scientometric Review and Thematic Areas for the Research Trends on Marine Hoses," Energies, MDPI, vol. 15(20), pages 1-31, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7723-:d:947060
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7723/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7723/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chaomei Chen & Fidelia Ibekwe‐SanJuan & Jianhua Hou, 2010. "The structure and dynamics of cocitation clusters: A multiple‐perspective cocitation analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(7), pages 1386-1409, July.
    2. Salaheddin Malkawi & Suhil Kiwan & Sajedah Alzghoul, 2022. "Impact of COVID-19 Response Measures on Electricity Sector in Jordan," Energies, MDPI, vol. 15(10), pages 1-18, May.
    3. Gohar Feroz Khan & Jacob Wood, 2015. "Information technology management domain: emerging themes and keyword analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(2), pages 959-972, November.
    4. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    5. Ludo Waltman & Nees Eck, 2013. "A smart local moving algorithm for large-scale modularity-based community detection," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(11), pages 1-14, November.
    6. Nees Jan van Eck & Ludo Waltman & Rommert Dekker & Jan van den Berg, 2010. "A comparison of two techniques for bibliometric mapping: Multidimensional scaling and VOS," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(12), pages 2405-2416, December.
    7. Perianes-Rodriguez, Antonio & Waltman, Ludo & van Eck, Nees Jan, 2016. "Constructing bibliometric networks: A comparison between full and fractional counting," Journal of Informetrics, Elsevier, vol. 10(4), pages 1178-1195.
    8. Huchang Liao & Ming Tang & Li Luo & Chunyang Li & Francisco Chiclana & Xiao-Jun Zeng, 2018. "A Bibliometric Analysis and Visualization of Medical Big Data Research," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
    9. Chaomei Chen & Fidelia Ibekwe-SanJuan & Jianhua Hou, 2010. "The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(7), pages 1386-1409, July.
    10. Nees Jan van Eck & Ludo Waltman, 2009. "How to normalize cooccurrence data? An analysis of some well‐known similarity measures," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(8), pages 1635-1651, August.
    11. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    12. Lukas Hartwig & Reinhard Hössinger & Yusak Octavius Susilo & Astrid Gühnemann, 2022. "The Impacts of a COVID-19 Related Lockdown (and Reopening Phases) on Time Use and Mobility for Activities in Austria—Results from a Multi-Wave Combined Survey," Sustainability, MDPI, vol. 14(12), pages 1-24, June.
    13. Jun, Seung-Pyo & Yoo, Hyoung Sun & Choi, San, 2018. "Ten years of research change using Google Trends: From the perspective of big data utilizations and applications," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 69-87.
    14. Fangtao Liu & Yong Ding & Jia Gao & Pu Gong, 2017. "Effects of Cost Factors on National Manufacturing Based on Global Perspectives," Economies, MDPI, vol. 5(4), pages 1-16, November.
    15. Waltman, Ludo & van Eck, Nees Jan & Noyons, Ed C.M., 2010. "A unified approach to mapping and clustering of bibliometric networks," Journal of Informetrics, Elsevier, vol. 4(4), pages 629-635.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong Zhu & Jin Li & Zhenjie Yuan & Jie Li, 2023. "Bibliometric Analysis of Spatial Accessibility from 1999–2022," Sustainability, MDPI, vol. 15(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. María Pinto & Rosaura Fernández-Pascual & David Caballero-Mariscal & Dora Sales, 2020. "Information literacy trends in higher education (2006–2019): visualizing the emerging field of mobile information literacy," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1479-1510, August.
    2. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    3. María de la Cruz del Río-Rama & Claudia Patricia Maldonado-Erazo & José Álvarez-García & Amador Durán-Sánchez, 2020. "Cultural and Natural Resources in Tourism Island: Bibliometric Mapping," Sustainability, MDPI, vol. 12(2), pages 1-26, January.
    4. Francesco Paolo Appio & Fabrizio Cesaroni & Alberto Minin, 2014. "Visualizing the structure and bridges of the intellectual property management and strategy literature: a document co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 623-661, October.
    5. Belussi, Fiorenza & Orsi, Luigi & Savarese, Maria, 2019. "Mapping Business Model Research: A Document Bibliometric Analysis," Scandinavian Journal of Management, Elsevier, vol. 35(3).
    6. Francesco Paolo Appio & Antonella Martini & Silvia Massa & Stefania Testa, 2016. "Unveiling the intellectual origins of Social Media-based innovation: insights from a bibliometric approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(1), pages 355-388, July.
    7. Payam Hanafizadeh & Seyedali Marjaie, 2020. "Trends and turning points of banking: a timespan view," Review of Managerial Science, Springer, vol. 14(6), pages 1183-1219, December.
    8. Nina Sakinah Ahmad Rofaie & Seuk Wai Phoong & Muzalwana Abdul Talib & Ainin Sulaiman, 2023. "Light-emitting diode (LED) research: A bibliometric analysis during 2003–2018," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 173-191, February.
    9. Evi Sachini & Nikolaos Karampekios & Pierpaolo Brutti & Konstantinos Sioumalas-Christodoulou, 2020. "Should I stay or should I go? Using bibliometrics to identify the international mobility of highly educated Greek manpower," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 641-663, October.
    10. Ludo Waltman & Nees Jan Eck, 2012. "A new methodology for constructing a publication-level classification system of science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    11. Ben Zhang & Chenxu Ming, 2023. "Digital Transformation and Open Innovation Planning of Response to COVID-19 Outbreak: A Systematic Literature Review and Future Research Agenda," IJERPH, MDPI, vol. 20(3), pages 1-26, February.
    12. Yuen-Hsien Tseng & Ming-Yueh Tsay, 2013. "Journal clustering of library and information science for subfield delineation using the bibliometric analysis toolkit: CATAR," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(2), pages 503-528, May.
    13. Itsuki Kageyama & Karin Kurata & Shuto Miyashita & Yeongjoo Lim & Shintaro Sengoku & Kota Kodama, 2022. "A Bibliometric Analysis of Wearable Device Research Trends 2001–2022—A Study on the Reversal of Number of Publications and Research Trends in China and the USA," IJERPH, MDPI, vol. 19(24), pages 1-19, December.
    14. Marta Ortiz-de-Urbina-Criado & Juan-José Nájera-Sánchez & Eva-María Mora-Valentín, 2018. "A Research Agenda on Open Innovation and Entrepreneurship: A Co-Word Analysis," Administrative Sciences, MDPI, vol. 8(3), pages 1-17, July.
    15. Claudia Patricia Maldonado-Erazo & José Álvarez-García & María de la Cruz del Río-Rama & Amador Durán-Sánchez, 2021. "Scientific Mapping on the Impact of Climate Change on Cultural and Natural Heritage: A Systematic Scientometric Analysis," Land, MDPI, vol. 10(1), pages 1-19, January.
    16. Peng Cheng & Houtian Tang & Yue Dong & Ke Liu & Ping Jiang & Yaolin Liu, 2021. "Knowledge Mapping of Research on Land Use Change and Food Security: A Visual Analysis Using CiteSpace and VOSviewer," IJERPH, MDPI, vol. 18(24), pages 1-22, December.
    17. Keng Yang & Hanying Qi, 2022. "Research on Health Disparities Related to the COVID-19 Pandemic: A Bibliometric Analysis," IJERPH, MDPI, vol. 19(3), pages 1-25, January.
    18. van Eck, Nees Jan & Waltman, Ludo, 2014. "CitNetExplorer: A new software tool for analyzing and visualizing citation networks," Journal of Informetrics, Elsevier, vol. 8(4), pages 802-823.
    19. Jianhua Hou & Xiucai Yang & Chaomei Chen, 2018. "Emerging trends and new developments in information science: a document co-citation analysis (2009–2016)," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 869-892, May.
    20. Floris Goerlandt & Jie Li & Genserik Reniers, 2021. "The Landscape of Risk Perception Research: A Scientometric Analysis," Sustainability, MDPI, vol. 13(23), pages 1-26, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7723-:d:947060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.