IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i1p381-d718347.html
   My bibliography  Save this article

Prediction and Optimization of the Cost of Energy Resources in Greek Public Hospitals

Author

Listed:
  • Paraskevi N. Zaza

    (Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece)

  • Anastasios Sepetis

    (Business Administration Department, University of West Attica, 12244 Egaleo, Greece)

  • Pantelis G. Bagos

    (Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece)

Abstract

The continuous operation and the specialized conditions needed for safely delivering healthcare services make hospitals among the most expensive buildings. Several studies in different countries have investigated the potential role and contribution of macroscopic indices of hospitals in total energy requirements. In this work, we tried to investigate the energy requirements of Greek hospitals in terms of cost. We collected data from all public hospitals in Greece over a 2 year period (2018–2019) and evaluated the contribution of various factors in the total energy cost. The data revealed large variability by region and by hospital, even regarding structures of the same category and size. The analysis also showed that structural and operational data of each hospital differently influence the hospitals’ energy requirements. Using regression methods, we developed two models for calculating annual energy costs. One only contains hospital structural data (number of beds, type of hospital, number of employees, and the non/use of alternative energy sources such as natural gas), and it reached an R² of 0.84. The second model contains not only structural but also operational data from each hospital (number of the internal patients, number of surgeries and number of medical imaging tests), and it reached an R² of 0.87. The former model is easier to compute since it only relies on data that can be easily gathered, but the latter has slightly better performance. These tools can help the Ministry of Health and hospitals’ management to identify the factors that contribute to the energy cost in order to plan targeted interventions, be well-prepared regarding budgeting, and be able to progressively measure, monitor, and improve the environmental footprint of hospitals by investing in renewable energy resources.

Suggested Citation

  • Paraskevi N. Zaza & Anastasios Sepetis & Pantelis G. Bagos, 2022. "Prediction and Optimization of the Cost of Energy Resources in Greek Public Hospitals," Energies, MDPI, vol. 15(1), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:1:p:381-:d:718347
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/381/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/381/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khaled Bawaneh & Farnaz Ghazi Nezami & Md. Rasheduzzaman & Brad Deken, 2019. "Energy Consumption Analysis and Characterization of Healthcare Facilities in the United States," Energies, MDPI, vol. 12(19), pages 1-20, October.
    2. Ascarya & Hendri Tanjung, 2021. "Structures of Healthcare Waqf in Indonesia to Support SDGs," Springer Books, in: Mohd Ma'Sum Billah (ed.), Islamic Wealth and the SDGs, chapter 0, pages 305-324, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gautier, Antoine & Wetter, Michael & Sulzer, Matthias, 2022. "Resilient cooling through geothermal district energy system," Applied Energy, Elsevier, vol. 325(C).
    2. Klemeš, Jiří Jaromír & Fan, Yee Van & Jiang, Peng, 2020. "The energy and environmental footprints of COVID-19 fighting measures – PPE, disinfection, supply chains," Energy, Elsevier, vol. 211(C).
    3. Atienza-Márquez, Antonio & Domínguez Muñoz, Fernando & Fernández Hernández, Francisco & Cejudo López, José Manuel, 2022. "Domestic hot water production system in a hospital: Energy audit and evaluation of measures to boost the solar contribution," Energy, Elsevier, vol. 261(PB).
    4. Shouib Mabdeh & Hikmat Ali & Magd Al-Momani, 2022. "Life Cycle Assessment of Energy Retrofit Measures in Existing Healthcare Facility Buildings: The case of Developing Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 12(6), pages 418-431, November.
    5. Chro Hama Radha, 2023. "Retrofitting for Improving Indoor Air Quality and Energy Efficiency in the Hospital Building," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    6. Małgorzata Cygańska & Magdalena Kludacz-Alessandri, 2021. "Determinants of Electrical and Thermal Energy Consumption in Hospitals According to Climate Zones in Poland," Energies, MDPI, vol. 14(22), pages 1-24, November.
    7. Ashraf Balabel & Mamdooh Alwetaishi, 2021. "Toward Sustainable Healthcare Facilities: An Initiative for Development of “Mostadam-HCF” Rating System in Saudi Arabia," Sustainability, MDPI, vol. 13(12), pages 1-15, June.
    8. Dimitrios K. Panagiotou & Anastasios I. Dounis, 2023. "An ANFIS-Fuzzy Tree-GA Model for a Hospital’s Electricity Purchasing Decision-Making Process Integrated with Virtual Cost Concept," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    9. John Vourdoubas, 2022. "Possibility of Using Fuel Cells for Co-generation of Heat and Power in Venizelio Hospital in Crete, Greece," Environmental Management and Sustainable Development, Macrothink Institute, vol. 11(1), pages 51-61, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:1:p:381-:d:718347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.