IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7345-d934793.html
   My bibliography  Save this article

Sustainability and Cost Effectiveness Analysis of Staggered Jet Impingement on Solar Thermal Collector

Author

Listed:
  • Rajesh Maithani

    (Department of Mechanical Engineering, University of Petroleum and Energy Studied, Dehradun 248007, India)

  • Anil Kumar

    (Department of Mechanical Engineering, University of Petroleum and Energy Studied, Dehradun 248007, India)

  • Manoj Kumar

    (Department of Mechanical Engineering, DIT University, Dehradun 248009, India)

  • Sachin Sharma

    (Department of Mechanical Engineering, University of Petroleum and Energy Studied, Dehradun 248007, India)

Abstract

The sustainability index, waste energy ratio and improvement potential of a staggered air jet impingement on the staggered spherical protrusions of a roughened absorber plate were derived for the present study to evaluate exergy losses and irreversibility in the system. The experimental analysis was carried out for selected parameters: relative streamwise pitch, relative spanwise pitch and relative jet diameter to hydraulic diameter ratio. The flow Reynolds number ranged from 4000–18,000. The augmentation in Nusselt number and friction factor compared to a smooth surface was 4.9 and 12.4 times, respectively. The statistical correlation developed determined the maximum thermohydraulic performance parameter and exergetic efficiency be 3.02 and 3.87%, respectively. The magnitude of the sustainability index, waste energy ratio and improvement potential was found to be 1.0347, 0.962 and 10.84, respectively, for the entire range of tested parameters. A cost analysis was also performed to evaluate the cost-effectiveness of the solar thermal system with and without turbulent promoters.

Suggested Citation

  • Rajesh Maithani & Anil Kumar & Manoj Kumar & Sachin Sharma, 2022. "Sustainability and Cost Effectiveness Analysis of Staggered Jet Impingement on Solar Thermal Collector," Energies, MDPI, vol. 15(19), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7345-:d:934793
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7345/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7345/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alam, Tabish & Saini, R.P. & Saini, J.S., 2014. "Use of turbulators for heat transfer augmentation in an air duct – A review," Renewable Energy, Elsevier, vol. 62(C), pages 689-715.
    2. Singh, Satyender & Chaurasiya, Shailendra Kumar & Negi, Bharat Singh & Chander, Subhash & Nemś, Magdalena & Negi, Sushant, 2020. "Utilizing circular jet impingement to enhance thermal performance of solar air heater," Renewable Energy, Elsevier, vol. 154(C), pages 1327-1345.
    3. Salman, Mohammad & Chauhan, Ranchan & Kim, Sung Chul, 2021. "Exergy analysis of solar heat collector with air jet impingement on dimple-shape-roughened absorber surface," Renewable Energy, Elsevier, vol. 179(C), pages 918-928.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khargotra, Rohit & Kumar, Raj & András, Kovács & Fekete, Gusztáv & Singh, Tej, 2022. "Thermo-hydraulic characterization and design optimization of delta-shaped obstacles in solar water heating system using CRITIC-COPRAS approach," Energy, Elsevier, vol. 261(PB).
    2. Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
    3. Chaurasiya, Shailendra Kumar & Singh, Satyender, 2023. "High thermal performance of the solar air heater designs triggered by improved jet stability," Renewable Energy, Elsevier, vol. 204(C), pages 532-545.
    4. Liaqat Hussain & Muhammad Mahabat Khan & Manzar Masud & Fawad Ahmed & Zabdur Rehman & Łukasz Amanowicz & Krzysztof Rajski, 2021. "Heat Transfer Augmentation through Different Jet Impingement Techniques: A State-of-the-Art Review," Energies, MDPI, vol. 14(20), pages 1-40, October.
    5. Kumar, Amit & Singh, Ajeet Pratap & Akshayveer, & Singh, O.P., 2022. "Performance characteristics of a new curved double-pass counter flow solar air heater," Energy, Elsevier, vol. 239(PA).
    6. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    7. Ravanbakhsh, Mohammad & Gholizadeh, Mohammad & Rezapour, Mojtaba, 2023. "3E thermodynamic modeling and optimization a novel of ARS-CPVT with the effect of inserting a turbulator in the solar collector," Renewable Energy, Elsevier, vol. 209(C), pages 591-607.
    8. Thakur, Deep Singh & Khan, Mohd. Kaleem & Pathak, Manabendra, 2017. "Performance evaluation of solar air heater with novel hyperbolic rib geometry," Renewable Energy, Elsevier, vol. 105(C), pages 786-797.
    9. Kumar, Raj & Kumar, Sushil & Nadda, Rahul & Kumar, Khusmeet & Goel, Varun, 2022. "Thermo-hydraulic efficiency and correlation development of an indoor designed jet impingement solar thermal collector roughened with discrete multi-arc ribs," Renewable Energy, Elsevier, vol. 189(C), pages 1259-1277.
    10. Almeshaal, Mohammed & Palaniappan, Murugesan & MM, Matheswaran, 2024. "Assessment and enhancement of thermal performance for ring roughened finned jet impingement solar air heater for low-temperature applications," Energy, Elsevier, vol. 307(C).
    11. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    12. Gallegos, Ralph Kristoffer B. & Sharma, Rajnish N., 2017. "Flags as vortex generators for heat transfer enhancement: Gaps and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 950-962.
    13. Chaudhri, Kapil & Bhagoria, J.L. & Kumar, Vikash, 2022. "Transverse wedge-shaped rib roughened solar air heater (SAH) - Exergy based experimental investigation," Renewable Energy, Elsevier, vol. 184(C), pages 1150-1164.
    14. Mahato, M.K. & Singh, S.N., 2024. "Effect of the partial blockage in the exit of the mixing channel on thermo - Hydraulic performance of the multi – Pass jet plate solar air heater," Renewable Energy, Elsevier, vol. 222(C).
    15. Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
    16. António Araújo, 2020. "Thermo-Hydraulic Performance of Solar Air Collectors with Artificially Roughened Absorbers: A Comparative Review of Semi-Empirical Models," Energies, MDPI, vol. 13(14), pages 1-33, July.
    17. Aghaie, Alireza Zamani & Rahimi, Asghar B. & Akbarzadeh, Alireza, 2015. "A general optimized geometry of angled ribs for enhancing the thermo-hydraulic behavior of a solar air heater channel – A Taguchi approach," Renewable Energy, Elsevier, vol. 83(C), pages 47-54.
    18. Gürbüz, Emine Yağız & Şahinkesen, İstemihan & Kusun, Barış & Tuncer, Azim Doğuş & Keçebaş, Ali, 2023. "Enhancing the performance of an unglazed solar air collector using mesh tubes and Fe3O4 nano-enhanced absorber coating," Energy, Elsevier, vol. 277(C).
    19. Das, Biplab & Mondol, Jayanta Deb & Negi, Sushant & Smyth, Mervyn & Pugsley, Adrian, 2021. "Experimental performance analysis of a novel sand coated and sand filled polycarbonate sheet based solar air collector," Renewable Energy, Elsevier, vol. 164(C), pages 990-1004.
    20. Sheikhnejad, Yahya & Gandjalikhan Nassab, Seyed Abdolreza, 2021. "Enhancement of solar chimney performance by passive vortex generator," Renewable Energy, Elsevier, vol. 169(C), pages 437-450.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7345-:d:934793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.