IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148124000077.html
   My bibliography  Save this article

Effect of the partial blockage in the exit of the mixing channel on thermo - Hydraulic performance of the multi – Pass jet plate solar air heater

Author

Listed:
  • Mahato, M.K.
  • Singh, S.N.

Abstract

The present experimental work deals with the effect of partial blockage in the exit of the mixing channel on thermo-hydraulic performance of multi-pass jet plate solar air heater. This investigation is performed at IIT(ISM) Dhanbad campus (India) to obtain the results in terms of outlet temperature, collector efficiency, Temperature rise parameter (TRP), thermo - hydraulic performance parameter (THPP) and Nusselt number for double–pass cross and non–cross flow inline holes Jet Plate Solar Air Heater (JPSAH). Results for different ranges of operating and geometrical parameters such as, mass flow rate = 0.10–0.14 kg/s, Reynolds number, Re = 4741–10632, daily average solar flux incident on glass cover, Itavg. = 611–1113 W/m2 and blockage ratio (H/Z2) = 0, 0.33, 0.66 are presented. This work also compares the present results with simple double – pass solar air heater. It is found that the maximum percentage increments in THPP and Nu are 37 % and 79 % respectively at Re = 10247 and 9500 for BR = 0 compared to non-cross flow and simple double pass solar air heater. Based on the experimental data, correlations for the Nusselt number, friction factor and THPP have been developed.

Suggested Citation

  • Mahato, M.K. & Singh, S.N., 2024. "Effect of the partial blockage in the exit of the mixing channel on thermo - Hydraulic performance of the multi – Pass jet plate solar air heater," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148124000077
    DOI: 10.1016/j.renene.2024.119942
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124000077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.119942?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chauhan, Ranchan & Singh, Tej & Thakur, N.S. & Patnaik, Amar, 2016. "Optimization of parameters in solar thermal collector provided with impinging air jets based upon preference selection index method," Renewable Energy, Elsevier, vol. 99(C), pages 118-126.
    2. Salman, Mohammad & Chauhan, Ranchan & Poongavanam, Ganesh Kumar & Kim, Sung Chul, 2022. "Analytical investigation of jet impingement solar air heater with dimple-roughened absorber surface via thermal and effective analysis," Renewable Energy, Elsevier, vol. 199(C), pages 1248-1257.
    3. Chauhan, Ranchan & Singh, Tej & Thakur, N.S. & Kumar, Nitin & Kumar, Raj & Kumar, Anil, 2018. "Heat transfer augmentation in solar thermal collectors using impinging air jets: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3179-3190.
    4. Singh, Satyender & Chaurasiya, Shailendra Kumar & Negi, Bharat Singh & Chander, Subhash & Nemś, Magdalena & Negi, Sushant, 2020. "Utilizing circular jet impingement to enhance thermal performance of solar air heater," Renewable Energy, Elsevier, vol. 154(C), pages 1327-1345.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
    3. Chaurasiya, Shailendra Kumar & Singh, Satyender, 2023. "High thermal performance of the solar air heater designs triggered by improved jet stability," Renewable Energy, Elsevier, vol. 204(C), pages 532-545.
    4. Chauhan, Ranchan & Kim, Sung Chul, 2019. "Effective efficiency distribution characteristics in protruded/dimpled-arc plate solar thermal collector," Renewable Energy, Elsevier, vol. 138(C), pages 955-963.
    5. Liaqat Hussain & Muhammad Mahabat Khan & Manzar Masud & Fawad Ahmed & Zabdur Rehman & Łukasz Amanowicz & Krzysztof Rajski, 2021. "Heat Transfer Augmentation through Different Jet Impingement Techniques: A State-of-the-Art Review," Energies, MDPI, vol. 14(20), pages 1-40, October.
    6. Kumar, Amit & Singh, Ajeet Pratap & Akshayveer, & Singh, O.P., 2022. "Performance characteristics of a new curved double-pass counter flow solar air heater," Energy, Elsevier, vol. 239(PA).
    7. Maithani, Rajesh & Sharma, Sachin & Kumar, Anil, 2021. "Thermo-hydraulic and exergy analysis of inclined impinging jets on absorber plate of solar air heater," Renewable Energy, Elsevier, vol. 179(C), pages 84-95.
    8. Nadda, Rahul & Kumar, Anil & Maithani, Rajesh, 2018. "Efficiency improvement of solar photovoltaic/solar air collectors by using impingement jets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 331-353.
    9. Hu, Jianjun & Guo, Meng & Guo, Jinyong & Zhang, Guangqiu & Zhang, Yuwen, 2020. "Numerical and experimental investigation of solar air collector with internal swirling flow," Renewable Energy, Elsevier, vol. 162(C), pages 2259-2271.
    10. Salman, Mohammad & Park, Myeong Hyeon & Chauhan, Ranchan & Kim, Sung Chul, 2021. "Experimental analysis of single loop solar heat collector with jet impingement over indented dimples," Renewable Energy, Elsevier, vol. 169(C), pages 618-628.
    11. Rajesh Maithani & Anil Kumar & Manoj Kumar & Sachin Sharma, 2022. "Sustainability and Cost Effectiveness Analysis of Staggered Jet Impingement on Solar Thermal Collector," Energies, MDPI, vol. 15(19), pages 1-19, October.
    12. Jan Wajs & Michał Bajor & Dariusz Mikielewicz, 2019. "Thermal-Hydraulic Studies on the Shell-and-Tube Heat Exchanger with Minijets," Energies, MDPI, vol. 12(17), pages 1-12, August.
    13. Rashidi, Saman & Hormozi, Faramarz & Sundén, Bengt & Mahian, Omid, 2019. "Energy saving in thermal energy systems using dimpled surface technology – A review on mechanisms and applications," Applied Energy, Elsevier, vol. 250(C), pages 1491-1547.
    14. Srivastav, Ayushman & Maithani, Rajesh & Sharma, Sachin, 2024. "Investigation of heat transfer and friction characteristics of solar air heater through an array of submerged impinging jets," Renewable Energy, Elsevier, vol. 227(C).
    15. Elwekeel, Fifi N.M. & E. F. Nasr, Abdel-Atty & I. Radwan, Momen & I.A. Aly, Wael, 2024. "Influence of impingement jet designs on solar air collector performance," Renewable Energy, Elsevier, vol. 221(C).
    16. Ewe, Win Eng & Fudholi, Ahmad & Sopian, Kamaruzzaman & Moshery, Refat & Asim, Nilofar & Nuriana, Wahidin & Ibrahim, Adnan, 2022. "Thermo-electro-hydraulic analysis of jet impingement bifacial photovoltaic thermal (JIBPVT) solar air collector," Energy, Elsevier, vol. 254(PB).
    17. Kumar, Raj & Kumar, Sushil & Nadda, Rahul & Kumar, Khusmeet & Goel, Varun, 2022. "Thermo-hydraulic efficiency and correlation development of an indoor designed jet impingement solar thermal collector roughened with discrete multi-arc ribs," Renewable Energy, Elsevier, vol. 189(C), pages 1259-1277.
    18. Salman, Mohammad & Chauhan, Ranchan & Kim, Sung Chul, 2021. "Exergy analysis of solar heat collector with air jet impingement on dimple-shape-roughened absorber surface," Renewable Energy, Elsevier, vol. 179(C), pages 918-928.
    19. Chaudhri, Kapil & Bhagoria, J.L. & Kumar, Vikash, 2022. "Transverse wedge-shaped rib roughened solar air heater (SAH) - Exergy based experimental investigation," Renewable Energy, Elsevier, vol. 184(C), pages 1150-1164.
    20. Sharma, Ashutosh & Chauhan, Ranchan & Singh, Tej & Kumar, Anil & Kumar, Raj & Kumar, Anil & Sethi, Muneesh, 2017. "Optimizing discrete V obstacle parameters using a novel Entropy-VIKOR approach in a solar air flow channel," Renewable Energy, Elsevier, vol. 106(C), pages 310-320.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148124000077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.