IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7264-d932585.html
   My bibliography  Save this article

Fault Detection, Isolation and Service Restoration in Modern Power Distribution Systems: A Review

Author

Listed:
  • Ishan Srivastava

    (Department of Electrical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India)

  • Sunil Bhat

    (Department of Electrical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India)

  • B. V. Surya Vardhan

    (Department of Electrical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India)

  • Neeraj Dhanraj Bokde

    (Center for Quantitative Genetics and Genomics, Aarhus University, 8000 Aarhus, Denmark
    iCLIMATE Aarhus University Interdisciplinary Centre for Climate Change, Foulum, 8830 Tjele, Denmark)

Abstract

This study examines the conceptual features of Fault Detection, Isolation, and Restoration (FDIR) following an outage in an electric distribution system.This paper starts with a discussion of the premise for distribution automation, including its features and the different challenges associated with its implementation in a smart grid paradigm. Then, this article explores various concepts, control schemes, and approaches related to FDIR. Service restoration is one of the main strategies for such distribution automation, through which the healthy section of the power distribution network is re-energized by changing the topology of the network. In a smart grid paradigm, the presence of intelligent electronic devices can facilitate the automatic implementation of the service restoration scheme. The concepts of service restoration and various approaches are thoroughly presented in this article. A comparison is made among various significant approaches reported for distribution automation. The outcome of our literature survey and scope for future research concludes this review.

Suggested Citation

  • Ishan Srivastava & Sunil Bhat & B. V. Surya Vardhan & Neeraj Dhanraj Bokde, 2022. "Fault Detection, Isolation and Service Restoration in Modern Power Distribution Systems: A Review," Energies, MDPI, vol. 15(19), pages 1-26, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7264-:d:932585
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7264/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7264/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shaheen Kousar & Nazir Ahmad Zafar & Tariq Ali & Eman H. Alkhammash & Myriam Hadjouni, 2022. "Formal Modeling of IoT-Based Distribution Management System for Smart Grids," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
    2. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2020. "An Overview of Demand Response in Smart Grid and Optimization Techniques for Efficient Residential Appliance Scheduling Problem," Energies, MDPI, vol. 13(16), pages 1-31, August.
    3. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    4. Gianfranco Chicco & Andrea Mazza, 2020. "Metaheuristic Optimization of Power and Energy Systems: Underlying Principles and Main Issues of the ‘Rush to Heuristics’," Energies, MDPI, vol. 13(19), pages 1-38, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leandro José Duarte & Alan Petrônio Pinheiro & Daniel Oliveira Ferreira, 2022. "A Real-Time Method to Estimate the Operational Condition of Distribution Transformers," Energies, MDPI, vol. 15(22), pages 1-20, November.
    2. B. V. Surya Vardhan & Mohan Khedkar & Ishan Srivastava & Prajwal Thakre & Neeraj Dhanraj Bokde, 2023. "A Comparative Analysis of Hyperparameter Tuned Stochastic Short Term Load Forecasting for Power System Operator," Energies, MDPI, vol. 16(3), pages 1-21, January.
    3. Vitor Monteiro & Joao L. Afonso, 2023. "The Future of Electrical Power Grids: A Direction Rooted in Power Electronics," Energies, MDPI, vol. 16(13), pages 1-10, June.
    4. Sadeghi, M. & Kalantar, M., 2023. "Fully decentralized multi-agent coordination scheme in smart distribution restoration: Multilevel consensus," Applied Energy, Elsevier, vol. 350(C).
    5. Jorge De La Cruz & Eduardo Gómez-Luna & Majid Ali & Juan C. Vasquez & Josep M. Guerrero, 2023. "Fault Location for Distribution Smart Grids: Literature Overview, Challenges, Solutions, and Future Trends," Energies, MDPI, vol. 16(5), pages 1-37, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. B. V. Surya Vardhan & Mohan Khedkar & Ishan Srivastava & Prajwal Thakre & Neeraj Dhanraj Bokde, 2023. "A Comparative Analysis of Hyperparameter Tuned Stochastic Short Term Load Forecasting for Power System Operator," Energies, MDPI, vol. 16(3), pages 1-21, January.
    2. Taimoor Ahmad Khan & Amjad Ullah & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Faheem Ali & Sajjad Ali & Sheraz Khan & Khalid Rehman, 2022. "A Fractional Order Super Twisting Sliding Mode Controller for Energy Management in Smart Microgrid Using Dynamic Pricing Approach," Energies, MDPI, vol. 15(23), pages 1-14, November.
    3. Tom Elliott & Joachim Geske & Richard Green, 2022. "Business Models for Active Buildings," Energies, MDPI, vol. 15(19), pages 1-17, October.
    4. Amin, Amin & Mourshed, Monjur, 2024. "Community stochastic domestic electricity forecasting," Applied Energy, Elsevier, vol. 355(C).
    5. Carmine Cancro & Camelia Delcea & Salvatore Fabozzi & Gabriella Ferruzzi & Giorgio Graditi & Valeria Palladino & Maria Valenti, 2022. "A Profitability Analysis for an Aggregator in the Ancillary Services Market: An Italian Case Study," Energies, MDPI, vol. 15(9), pages 1-26, April.
    6. Nguyen, Hai-Tra & Safder, Usman & Loy-Benitez, Jorge & Yoo, ChangKyoo, 2022. "Optimal demand side management scheduling-based bidirectional regulation of energy distribution network for multi-residential demand response with self-produced renewable energy," Applied Energy, Elsevier, vol. 322(C).
    7. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    8. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    9. Sara Ayub & Shahrin Md Ayob & Chee Wei Tan & Saad M. Arif & Muhammad Taimoor & Lubna Aziz & Abba Lawan Bukar & Qasem Al-Tashi & Razman Ayop, 2023. "Multi-Criteria Energy Management with Preference Induced Load Scheduling Using Grey Wolf Optimizer," Sustainability, MDPI, vol. 15(2), pages 1-38, January.
    10. Ahmed M. Nassef & Mohammad Ali Abdelkareem & Hussein M. Maghrabie & Ahmad Baroutaji, 2023. "Review of Metaheuristic Optimization Algorithms for Power Systems Problems," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    11. Wu, Jiaman & Lu, Chenbei & Wu, Chenye & Shi, Jian & Gonzalez, Marta C. & Wang, Dan & Han, Zhu, 2024. "A cluster-based appliance-level-of-use demand response program design," Applied Energy, Elsevier, vol. 362(C).
    12. Chen, Xiaoling & Miller, Cory & Goutham, Mithun & Hanumalagutti, Prasad Dev & Blaser, Rachel & Stockar, Stephanie, 2024. "Development and evaluation of an online home energy management strategy for load coordination in smart homes with renewable energy sources," Energy, Elsevier, vol. 290(C).
    13. Christoforos Menos-Aikateriniadis & Ilias Lamprinos & Pavlos S. Georgilakis, 2022. "Particle Swarm Optimization in Residential Demand-Side Management: A Review on Scheduling and Control Algorithms for Demand Response Provision," Energies, MDPI, vol. 15(6), pages 1-26, March.
    14. R, Revathi & N, Senthilnathan & V, Kumar Chinnaiyan, 2024. "Hybrid optimization approach for power scheduling with PV-battery system in smart grids," Energy, Elsevier, vol. 290(C).
    15. Hegazy Rezk & A. G. Olabi & Enas Taha Sayed & Tabbi Wilberforce, 2023. "Role of Metaheuristics in Optimizing Microgrids Operating and Management Issues: A Comprehensive Review," Sustainability, MDPI, vol. 15(6), pages 1-27, March.
    16. S. Sofana Reka & Prakash Venugopal & V. Ravi & Tomislav Dragicevic, 2023. "Privacy-Based Demand Response Modeling for Residential Consumers Using Machine Learning with a Cloud–Fog-Based Smart Grid Environment," Energies, MDPI, vol. 16(4), pages 1-16, February.
    17. Vasileios M. Laitsos & Dimitrios Bargiotas & Aspassia Daskalopulu & Athanasios Ioannis Arvanitidis & Lefteri H. Tsoukalas, 2021. "An Incentive-Based Implementation of Demand Side Management in Power Systems," Energies, MDPI, vol. 14(23), pages 1-24, November.
    18. Ouédraogo, S. & Faggianelli, G.A. & Notton, G. & Duchaud, J.L. & Voyant, C., 2022. "Impact of electricity tariffs and energy management strategies on PV/Battery microgrid performances," Renewable Energy, Elsevier, vol. 199(C), pages 816-825.
    19. István G. Balázs & Attila Fodor & Attila Magyar, 2021. "Quantification of the Flexibility of Residential Prosumers," Energies, MDPI, vol. 14(16), pages 1-21, August.
    20. Volpato, Gabriele & Carraro, Gianluca & Cont, Marco & Danieli, Piero & Rech, Sergio & Lazzaretto, Andrea, 2022. "General guidelines for the optimal economic aggregation of prosumers in energy communities," Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7264-:d:932585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.