IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7263-d932562.html
   My bibliography  Save this article

The Performance of an Air-Cooled Diesel Engine with a Variable Cross-Section Dual-Channel Swirl Chamber

Author

Listed:
  • Lei Wu

    (Department of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
    Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, Shaoyang University, Shaoyang 422000, China)

  • Jun Fu

    (Department of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
    Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, Shaoyang University, Shaoyang 422000, China)

  • Yi Ma

    (Department of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China
    Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, Shaoyang University, Shaoyang 422000, China)

  • Donghe Xie

    (College of Vehicle Engineering, Hunan Automotive Engineering Vocational College, Zhuzhou 412000, China)

Abstract

In order to improve the performance of a mini-type air-cooled diesel engine in terms of the overall efficiency and engine emissions, a swirl chamber of a variable cross-section dual-channel model was developed. This study proposed nine turbulent swirl chambers with a variable cross-section for a dual-channel combustion solution, which applied a dual-channel cross-section to the insert between the original swirl chamber and the main chamber. Model-based design, simulation and experiments were applied as a feasible approach to address this issue to find out the influence of the dual-channel inclination angle and divergence angle on the swirl rate in the swirl chamber, the power and the emissions performance, including the fuel efficiency. By comparing the tests, the performance of the diesel engine with a variable cross-section dual-channel swirl chamber was superior to the original one with a single channel in terms of the swirl rate, fuel consumption rate and emissions.

Suggested Citation

  • Lei Wu & Jun Fu & Yi Ma & Donghe Xie, 2022. "The Performance of an Air-Cooled Diesel Engine with a Variable Cross-Section Dual-Channel Swirl Chamber," Energies, MDPI, vol. 15(19), pages 1-18, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7263-:d:932562
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7263/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7263/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. K. M. Akkoli & N. R. Banapurmath & Suresh G & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & Maughal Ahmed Ali Baig & M. A. Mujtaba & Nazia Hossain & Kiran Shahapurkar & Ashraf Elfasakhany & Mishal A, 2021. "Effect of Producer Gas from Redgram Stalk and Combustion Chamber Types on the Emission and Performance Characteristics of Diesel Engine," Energies, MDPI, vol. 14(18), pages 1-17, September.
    2. Chang, Jiang & Li, Xiangrong & Liu, Yang & Liu, Lifang & Chen, Yanlin & Liu, Dong & Kang, Yuning, 2022. "Combustion performance and energy distributions in a new multi-swirl combustion system," Energy, Elsevier, vol. 256(C).
    3. Costa, M. & Di Blasio, G. & Prati, M.V. & Costagliola, M.A. & Cirillo, D. & La Villetta, M. & Caputo, C. & Martoriello, G., 2020. "Multi-objective optimization of a syngas powered reciprocating engine equipping a combined heat and power unit," Applied Energy, Elsevier, vol. 275(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saad Ahmad & Ali Turab Jafry & Muteeb ul Haq & Naseem Abbas & Huma Ajab & Arif Hussain & Uzair Sajjad, 2023. "Performance and Emission Characteristics of Second-Generation Biodiesel with Oxygenated Additives," Energies, MDPI, vol. 16(13), pages 1-33, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    2. Sergej Maspanov & Igor Bogov & Svetlana Martynenko & Vladimir Sukhanov, 2023. "Analysis of the Exothermic Reaction of Flame Ignition in the Combustion Chamber of a Gas Turbine Unit," Energies, MDPI, vol. 16(21), pages 1-11, November.
    3. Patil, Basavaras B. & Topannavar, S.N. & Akkoli, K.M. & Shivashimpi, M.M. & Kattimani, Sunilkumar S., 2022. "Experimental investigation to optimize nozzle geometry and compression ratio along with injection pressure on single cylinder DI diesel engine operated with AOME biodiesel," Energy, Elsevier, vol. 254(PA).
    4. Alrbai, Mohammad & Ahmad, Adnan Darwish & Al-Dahidi, Sameer & Abubaker, Ahmad M. & Al-Ghussain, Loiy & Alahmer, Ali & Akafuah, Nelson K., 2023. "Performance and sensitivity analysis of raw biogas combustion under homogenous charge compression ignition conditions," Energy, Elsevier, vol. 283(C).
    5. Ali Sulaiman Alsagri & Abdulrahman A. Alrobaian, 2022. "Optimization of Combined Heat and Power Systems by Meta-Heuristic Algorithms: An Overview," Energies, MDPI, vol. 15(16), pages 1-34, August.
    6. Lyes Bennamoun, 2022. "Bioresource Technology for Bioenergy: Development and Trends," Energies, MDPI, vol. 15(5), pages 1-2, February.
    7. M. Costa & A. Buono & C. Caputo & A. Carotenuto & D. Cirillo & M. A. Costagliola & G. Di Blasio & M. La Villetta & A. Macaluso & G. Martoriello & N. Massarotti & A. Mauro & M. Migliaccio & V. Mulone &, 2020. "The “INNOVARE” Project: Innovative Plants for Distributed Poly-Generation by Residual Biomass," Energies, MDPI, vol. 13(15), pages 1-30, August.
    8. Giuseppe Di Luca & Gabriele Di Blasio & Alfredo Gimelli & Daniela Anna Misul, 2023. "Review on Battery State Estimation and Management Solutions for Next-Generation Connected Vehicles," Energies, MDPI, vol. 17(1), pages 1-34, December.
    9. Jie Pan & Junfang Ma & Junyin Li & Hongzhe Liu & Jing Wei & Jingjing Xu & Tao Zhu & Hairui Zhang & Wei Li & Jiaying Pan, 2022. "Influence of Intake Port Structure on the Performance of a Spark-Ignited Natural Gas Engine," Energies, MDPI, vol. 15(22), pages 1-13, November.
    10. Zuo, Jingying & Cui, Naigang & Zhang, Silong & Wei, Jianfei & Li, Xin & Bao, Wen, 2023. "Parametric analysis on combustion characteristics of hydrocarbon fueled parallel wall-jet inside a supersonic combustor," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7263-:d:932562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.