IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7239-d931717.html
   My bibliography  Save this article

A Life-Cycle Approach to Investigate the Potential of Novel Biobased Construction Materials toward a Circular Built Environment

Author

Listed:
  • Naomi Keena

    (Peter Guo-hua Fu School of Architecture, Faculty of Engineering, McGill University, Montreal, QC H3A 0C2, Canada
    Yale Center for Ecosystems in Architecture (Yale CEA), Yale School of Architecture, New Haven, CT 06511, USA)

  • Marco Raugei

    (School of Engineering, Computing and Mathematics, Oxford Brookes University, Wheatley, Oxford OX33 1HX, UK
    Center for Life Cycle Assessment, Columbia University, New York, NY 10027, USA)

  • Mae-ling Lokko

    (Yale Center for Ecosystems in Architecture (Yale CEA), Yale School of Architecture, New Haven, CT 06511, USA)

  • Mohamed Aly Etman

    (Yale Center for Ecosystems in Architecture (Yale CEA), Yale School of Architecture, New Haven, CT 06511, USA)

  • Vicki Achnani

    (Yale Center for Ecosystems in Architecture (Yale CEA), Yale School of Architecture, New Haven, CT 06511, USA)

  • Barbara K. Reck

    (Center for Industrial Ecology, Yale School of the Environment, New Haven, CT 06511, USA)

  • Anna Dyson

    (Yale Center for Ecosystems in Architecture (Yale CEA), Yale School of Architecture, New Haven, CT 06511, USA)

Abstract

Conventional construction materials which rely on a fossil-based, nonrenewable extractive economy are typically associated with an entrenched linear economic approach to production. Current research indicates the clear interrelationships between the production and use of construction materials and anthropogenic climate change. This paper investigates the potential for emerging high-performance biobased construction materials, produced sustainably and/or using waste byproducts, to enable a more environmentally sustainable approach to the built environment. Life-cycle assessment (LCA) is employed to compare three wall assemblies using local biobased materials in Montreal (Canada), Nairobi (Kenya), and Accra (Ghana) vs. a traditional construction using gypsum boards and rockwool insulation. Global warming potential, nonrenewable cumulative energy demand, acidification potential, eutrophication potential, and freshwater consumption (FWC) are considered. Scenarios include options for design for disassembly (DfD), as well as potential future alternatives for electricity supply in Kenya and Ghana. Results indicate that all biobased alternatives have lower (often significantly so) life-cycle impacts per functional unit, compared to the traditional construction. DfD strategies are also shown to result in −10% to −50% impact reductions. The results for both African countries exhibit a large dependence on the electricity source used for manufacturing, with significant potential for future decarbonization, but also some associated tradeoffs in terms of acidification and eutrophication.

Suggested Citation

  • Naomi Keena & Marco Raugei & Mae-ling Lokko & Mohamed Aly Etman & Vicki Achnani & Barbara K. Reck & Anna Dyson, 2022. "A Life-Cycle Approach to Investigate the Potential of Novel Biobased Construction Materials toward a Circular Built Environment," Energies, MDPI, vol. 15(19), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7239-:d:931717
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7239/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7239/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wiedenhofer, Dominik & Fishman, Tomer & Lauk, Christian & Haas, Willi & Krausmann, Fridolin, 2019. "Integrating Material Stock Dynamics Into Economy-Wide Material Flow Accounting: Concepts, Modelling, and Global Application for 1900–2050," Ecological Economics, Elsevier, vol. 156(C), pages 121-133.
    2. Aitor Barrio & Fernando Burgoa Francisco & Andrea Leoncini & Lars Wietschel & Andrea Thorenz, 2021. "Life Cycle Sustainability Assessment of a Novel Bio-Based Multilayer Panel for Construction Applications," Resources, MDPI, vol. 10(10), pages 1-21, September.
    3. Philip Fearnside & Daniel Lashof & Pedro Moura-Costa, 2000. "Accounting for time in Mitigating Global Warming through land-use change and forestry," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 5(3), pages 239-270, September.
    4. Mensah, Theophilus Nii Odai & Oyewo, Ayobami Solomon & Breyer, Christian, 2021. "The role of biomass in sub-Saharan Africa’s fully renewable power sector – The case of Ghana," Renewable Energy, Elsevier, vol. 173(C), pages 297-317.
    5. George Yaw Obeng & Derrick Yeboah Amoah & Richard Opoku & Charles K. K. Sekyere & Eunice Akyereko Adjei & Ebenezer Mensah, 2020. "Coconut Wastes as Bioresource for Sustainable Energy: Quantifying Wastes, Calorific Values and Emissions in Ghana," Energies, MDPI, vol. 13(9), pages 1-13, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Livia Cosentino & Jorge Fernandes & Ricardo Mateus, 2023. "A Review of Natural Bio-Based Insulation Materials," Energies, MDPI, vol. 16(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    2. Guo, Xiuping & Meng, Xianglei & Luan, Qingfeng & Wang, Yanhua, 2023. "Trade openness, globalization, and natural resources management: The moderating role of economic complexity in newly industrialized countries," Resources Policy, Elsevier, vol. 85(PA).
    3. H. Damon Matthews & Kirsten Zickfeld & Alexander Koch & Amy Luers, 2023. "Accounting for the climate benefit of temporary carbon storage in nature," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Oscar J. Cacho & Robyn L. Hean & Russell M. Wise, 2003. "Carbon‐accounting methods and reforestation incentives," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 47(2), pages 153-179, June.
    5. Mathieu, Valentin & Roda, Jean-Marc, 2023. "A meta-analysis on wood trade flow modeling concepts," Forest Policy and Economics, Elsevier, vol. 149(C).
    6. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    7. Vita, Gibran & Lundström, Johan R. & Hertwich, Edgar G. & Quist, Jaco & Ivanova, Diana & Stadler, Konstantin & Wood, Richard, 2019. "The Environmental Impact of Green Consumption and Sufficiency Lifestyles Scenarios in Europe: Connecting Local Sustainability Visions to Global Consequences," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    8. Annie Levasseur & Pascal Lesage & Manuele Margni & Miguel Brandão & Réjean Samson, 2012. "Assessing temporary carbon sequestration and storage projects through land use, land-use change and forestry: comparison of dynamic life cycle assessment with ton-year approaches," Climatic Change, Springer, vol. 115(3), pages 759-776, December.
    9. Fearnside, Philip M., 2001. "Saving tropical forests as a global warming countermeasure: an issue that divides the environmental movement," Ecological Economics, Elsevier, vol. 39(2), pages 167-184, November.
    10. Virág, Doris & Wiedenhofer, Dominik & Baumgart, André & Matej, Sarah & Krausmann, Fridolin & Min, Jihoon & Rao, Narasimha D. & Haberl, Helmut, 2022. "How much infrastructure is required to support decent mobility for all? An exploratory assessment," Ecological Economics, Elsevier, vol. 200(C).
    11. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    12. Dominik Noll & Christian Lauk & Willi Haas & Simron Jit Singh & Panos Petridis & Dominik Wiedenhofer, 2022. "The sociometabolic transition of a small Greek island: Assessing stock dynamics, resource flows, and material circularity from 1929 to 2019," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 577-591, April.
    13. Feng, Hongli, 2005. "The dynamics of carbon sequestration and alternative carbon accounting, with an application to the upper Mississippi River Basin," Ecological Economics, Elsevier, vol. 54(1), pages 23-35, July.
    14. Miko Kirschbaum, 2006. "Temporary Carbon Sequestration Cannot Prevent Climate Change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 1151-1164, September.
    15. Nahuel Bautista & Bruno D. V. Marino & J. William Munger, 2021. "Science to Commerce: A Commercial-Scale Protocol for Carbon Trading Applied to a 28-Year Record of Forest Carbon Monitoring at the Harvard Forest," Land, MDPI, vol. 10(2), pages 1-22, February.
    16. Olivia Cintas & Göran Berndes & Annette L. Cowie & Gustaf Egnell & Hampus Holmström & Göran I. Ågren, 2016. "The climate effect of increased forest bioenergy use in Sweden: evaluation at different spatial and temporal scales," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 351-369, May.
    17. Suzi Kerr, 2003. "Indigenous Forests and Forest Sink Policy in New Zealand," Working Papers 03_15, Motu Economic and Public Policy Research.
    18. Klaus Keller & Zili Yang & Matt Hall & David F. Bradford, 2003. "Carbon Dioxide Sequestrian: When And How Much?," Working Papers 108, Princeton University, Department of Economics, Center for Economic Policy Studies..
    19. Osborne, Tracey & Kiker, Clyde, 2005. "Carbon offsets as an economic alternative to large-scale logging: a case study in Guyana," Ecological Economics, Elsevier, vol. 52(4), pages 481-496, March.
    20. Jan Streeck & Hanspeter Wieland & Stefan Pauliuk & Barbara Plank & Kenichi Nakajima & Dominik Wiedenhofer, 2023. "A review of methods to trace material flows into final products in dynamic material flow analysis: Comparative application of six methods to the United States and EXIOBASE3 regions, Part 2," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 457-475, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7239-:d:931717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.