IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7031-d924421.html
   My bibliography  Save this article

Multi-Objective Optimization of Building Environmental Performance: An Integrated Parametric Design Method Based on Machine Learning Approaches

Author

Listed:
  • Yijun Lu

    (Department of Architecture, College of Design and Engineering, National University of Singapore, Singapore 119077, Singapore)

  • Wei Wu

    (A. Alfred Taubman College of Architecture and Urban Planning, University of Michigan, Ann Arbor, MI 48103, USA)

  • Xuechuan Geng

    (College of Architecture and Urban Planning, Qingdao University of Technology, Qingdao 266000, China)

  • Yanchen Liu

    (Department of Architecture, The University of Tokyo, Tokyo 113-8654, Japan)

  • Hao Zheng

    (Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA 19104, USA)

  • Miaomiao Hou

    (Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA 19104, USA
    College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China)

Abstract

Reducing energy consumption while providing a high-quality environment for building occupants has become an important target worthy of consideration in the pre-design stage. A reasonable design can achieve both better performance and energy conservation. Parametric design tools show potential to integrate performance simulation and control elements into the early design stage. The large number of design scheme iterations, however, increases the computational load and simulation time, hampering the search for optimized solutions. This paper proposes an integration of parametric design and optimization methods with performance simulation, machine learning, and algorithmic generation. Architectural schemes were modeled parametrically, and numerous iterations were generated systematically and imported into neural networks. Generative Adversarial Networks (GANs) were used to predict environmental performance based on the simulation results. Then, multi-object optimization can be achieved through the fast evolution of the genetic algorithm binding with the database. The test case used in this paper demonstrates that this approach can solve the optimization problem with less time and computational cost, and it provides architects with a fast and easily implemented tool to optimize design strategies based on specific environmental objectives.

Suggested Citation

  • Yijun Lu & Wei Wu & Xuechuan Geng & Yanchen Liu & Hao Zheng & Miaomiao Hou, 2022. "Multi-Objective Optimization of Building Environmental Performance: An Integrated Parametric Design Method Based on Machine Learning Approaches," Energies, MDPI, vol. 15(19), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7031-:d:924421
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7031/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7031/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ascione, Fabrizio & Bianco, Nicola & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2019. "A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin," Applied Energy, Elsevier, vol. 241(C), pages 331-361.
    2. Le-Thanh, Luan & Le-Duc, Thang & Ngo-Minh, Hung & Nguyen, Quoc-Hung & Nguyen-Xuan, H., 2021. "Optimal design of an Origami-inspired kinetic façade by balancing composite motion optimization for improving daylight performance and energy efficiency," Energy, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qibo Liu & Xiao Han & Yuheng Yan & Juan Ren, 2023. "A Parametric Design Method for the Lighting Environment of a Library Building Based on Building Performance Evaluation," Energies, MDPI, vol. 16(2), pages 1-20, January.
    2. Saurbayeva, Assemgul & Memon, Shazim Ali & Kim, Jong, 2023. "Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones," Energy, Elsevier, vol. 278(PB).
    3. Gonçalves, M. & Figueiredo, A. & Almeida, R.M.S.F. & Vicente, R., 2024. "Dynamic façades in buildings: A systematic review across thermal comfort, energy efficiency and daylight performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Hanze Yu & Wei Yang & Qiyuan Li & Jie Li, 2022. "Optimizing Buildings’ Life Cycle Performance While Allowing Diversity in the Early Design Stage," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    5. Hasim Altan & Bertug Ozarisoy, 2022. "An Analysis of the Development of Modular Building Design Elements to Improve Thermal Performance of a Representative High Rise Residential Estate in the Coastline City of Famagusta, Cyprus," Sustainability, MDPI, vol. 14(7), pages 1-50, March.
    6. Małgorzata Basińska & Dobrosława Kaczorek & Halina Koczyk, 2020. "Building Thermo-Modernisation Solution Based on the Multi-Objective Optimisation Method," Energies, MDPI, vol. 13(6), pages 1-19, March.
    7. Joana Fernandes & Maria Catarina Santos & Rui Castro, 2021. "Introductory Review of Energy Efficiency in Buildings Retrofits," Energies, MDPI, vol. 14(23), pages 1-18, December.
    8. Abdo Abdullah Ahmed Gassar & Choongwan Koo & Tae Wan Kim & Seung Hyun Cha, 2021. "Performance Optimization Studies on Heating, Cooling and Lighting Energy Systems of Buildings during the Design Stage: A Review," Sustainability, MDPI, vol. 13(17), pages 1-47, September.
    9. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "Impact of adjustment strategies on building design process in different climates oriented by multiple performance," Applied Energy, Elsevier, vol. 266(C).
    10. Zhan, Jin & He, Wenjing & Huang, Jianxiang, 2024. "Comfort, carbon emissions, and cost of building envelope and photovoltaic arrangement optimization through a two-stage model," Applied Energy, Elsevier, vol. 356(C).
    11. Ciardiello, Adriana & Rosso, Federica & Dell'Olmo, Jacopo & Ciancio, Virgilio & Ferrero, Marco & Salata, Ferdinando, 2020. "Multi-objective approach to the optimization of shape and envelope in building energy design," Applied Energy, Elsevier, vol. 280(C).
    12. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    13. Seyedzadeh, Saleh & Pour Rahimian, Farzad & Oliver, Stephen & Rodriguez, Sergio & Glesk, Ivan, 2020. "Machine learning modelling for predicting non-domestic buildings energy performance: A model to support deep energy retrofit decision-making," Applied Energy, Elsevier, vol. 279(C).
    14. Razmi, Afshin & Rahbar, Morteza & Bemanian, Mohammadreza, 2022. "PCA-ANN integrated NSGA-III framework for dormitory building design optimization: Energy efficiency, daylight, and thermal comfort," Applied Energy, Elsevier, vol. 305(C).
    15. Li, Sihui & Peng, Jinqing & Wang, Meng & Wang, Kai & Li, Houpei & Lu, Chujie, 2024. "Approaching nearly zero energy of PV direct air conditioners by integrating building design, load flexibility and PCM," Renewable Energy, Elsevier, vol. 221(C).
    16. Shi, Hao & Xu, Huining & Tan, Yiqiu & Li, Qiang & Yi, Wei, 2022. "Multi-objective optimization of operation strategy in snow melting system for airfield runway using genetic algorithm: A case study in Beijing Daxing International Airport," Renewable Energy, Elsevier, vol. 201(P2), pages 100-116.
    17. Chi, Fang'ai & Xu, Ying, 2022. "Building performance optimization for university dormitory through integration of digital gene map into multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 307(C).
    18. Ali Sadollah & Mohammad Nasir & Zong Woo Geem, 2020. "Sustainability and Optimization: From Conceptual Fundamentals to Applications," Sustainability, MDPI, vol. 12(5), pages 1-34, March.
    19. Bushra, Nayab & Hartmann, Timo, 2024. "A method for design optimization of roof-integrated two-stage solar concentrators (TSSCs)," Applied Energy, Elsevier, vol. 353(PA).
    20. Li, Hangxin & Wang, Shengwei, 2019. "Coordinated optimal design of zero/low energy buildings and their energy systems based on multi-stage design optimization," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7031-:d:924421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.