IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7015-d923973.html
   My bibliography  Save this article

Longitudinal DC Discharge in a Supersonic Flow: Numerical Simulation and Experiment

Author

Listed:
  • Alexander Firsov

    (Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS), 125412 Moscow, Russia)

  • Valentin Bityurin

    (Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS), 125412 Moscow, Russia)

  • Dmitriy Tarasov

    (Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS), 125412 Moscow, Russia)

  • Anastasia Dobrovolskaya

    (Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS), 125412 Moscow, Russia)

  • Roman Troshkin

    (Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS), 125412 Moscow, Russia)

  • Aleksey Bocharov

    (Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS), 125412 Moscow, Russia)

Abstract

This work focuses on detailed descriptions of DC discharge properties in supersonic airflow and its applicability in combustion simulations. Due to the complexity of obtaining most of the data in the experiment, our experimental research was supplemented by a numerical simulation. Two packages, i.e., FlowVision (fast commercial CFD for 3D engineering) and Plasmaero (2D scientific code developed in JIHT RAS for MHD tasks), were used for modeling the arc DC discharge in a supersonic flow at Mach (M) = 2. Both will be considered for further use in plasma-assisted combustion modeling, so it is important to validate both codes using experimental data from the model configuration with discharge. Axisymmetric geometries of experiments with two coaxial electrodes located parallel to the flow were chosen to avoid the appearance of the current channel part perpendicular to the flow and the corresponding discharge pulsations. Such geometries allow performing numerical simulations in 2D formulation, making it possible to compare the results obtained in the experiments and calculations. As a result of this work, two-dimensional distributions involving temperature, current density, chemical composition, and other discharge and flow parameters were obtained for arc DC discharges 0.5–7 A in a supersonic flow (Pst = 22 kPa, T = 170 K, V~500 m/s). Good qualitative agreement between experimental and numerical results was achieved. The production of a significant amount of atomic oxygen, which accelerates combustion, was noted.

Suggested Citation

  • Alexander Firsov & Valentin Bityurin & Dmitriy Tarasov & Anastasia Dobrovolskaya & Roman Troshkin & Aleksey Bocharov, 2022. "Longitudinal DC Discharge in a Supersonic Flow: Numerical Simulation and Experiment," Energies, MDPI, vol. 15(19), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7015-:d:923973
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7015/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7015/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Irina V. Mursenkova & Igor E. Ivanov & Yugan Liao & Igor A. Kryukov, 2022. "Experimental and Numerical Investigation of a Surface Sliding Discharge in a Supersonic Flow with an Oblique Shock Wave," Energies, MDPI, vol. 15(6), pages 1-13, March.
    2. Sergey B. Leonov, 2018. "Electrically Driven Supersonic Combustion," Energies, MDPI, vol. 11(7), pages 1-35, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaolong Li & Zhixun Xia & Likun Ma & Xiang Zhao & Binbin Chen, 2019. "Numerical Study on the Solid Fuel Rocket Scramjet Combustor with Cavity," Energies, MDPI, vol. 12(7), pages 1-17, March.
    2. Lars Zigan, 2018. "Electric Fields in Energy and Process Engineering," Energies, MDPI, vol. 11(9), pages 1-4, August.
    3. Konstantin V. Khishchenko, 2022. "Equation of State for Bismuth at High Energy Densities," Energies, MDPI, vol. 15(19), pages 1-12, September.
    4. Xiaobei Cheng & Xinhua Zhang & Zhaowen Wang & Huimin Wu & Zhaowu Wang & Jyh-Yuan Chen, 2021. "Effect of Microwave Pulses on the Morphology and Development of Spark-Ignited Flame Kernel," Energies, MDPI, vol. 14(19), pages 1-19, September.
    5. Tadeusz Mączka & Halina Pawlak-Kruczek & Lukasz Niedzwiecki & Edward Ziaja & Artur Chorążyczewski, 2020. "Plasma Assisted Combustion as a Cost-Effective Way for Balancing of Intermittent Sources: Techno-Economic Assessment for 200 MW el Power Unit," Energies, MDPI, vol. 13(19), pages 1-16, September.
    6. Muhammad Yousaf Arshad & Muhammad Azam Saeed & Muhammad Wasim Tahir & Ahsan Raza & Anam Suhail Ahmad & Fasiha Tahir & Bartłomiej Borkowski & Tadeusz Mączka & Lukasz Niedzwiecki, 2023. "Role of Experimental, Modeling, and Simulation Studies of Plasma in Sustainable Green Energy," Sustainability, MDPI, vol. 15(19), pages 1-35, September.
    7. Feng, Rong & Zhu, Jiajian & Wang, Zhenguo & Sun, Mingbo & Wang, Hongbo & Cai, Zun & An, Bin & Li, Liang, 2021. "Ignition modes of a cavity-based scramjet combustor by a gliding arc plasma," Energy, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7015-:d:923973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.