IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1733-d155746.html
   My bibliography  Save this article

Electrically Driven Supersonic Combustion

Author

Listed:
  • Sergey B. Leonov

    (Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA)

Abstract

This manuscript reviews published works related to plasma assistance in supersonic combustion; focusing on mixing enhancement, ignition and flameholding. A special attention is paid for studies, which the author participated in person. The Introduction discusses general trends in plasma-assisted combustion and, specifically, work involving supersonic conditions. In Section 2, the emphasis is placed on different approaches to plasma application for fuel ignition and flame stabilization. Several schemes of plasma-based actuators for supersonic combustion have been tested for flameholding purposes at flow conditions where self-ignition of the fuel/air mixture is not realizable due to low air temperatures. Comparing schemes indicates an obvious benefit of plasma generation in-situ, in the mixing layer of air and fuel. In Section 3, the problem of mixing enhancement using a plasma-based technique is considered. The mechanisms of interaction are discussed from the viewpoint of triggering gasdynamic instabilities promoting the kinematic stretching of the fuel-air interface. Section 4 is related to the description of transitional processes and combustion instabilities observed in plasma-assisted high-speed combustion. The dynamics of ignition and flame extinction are explored. It is shown that the characteristic time for reignition can be as short as 10 ms. Two types of flame instability were described which are related to the evolution of a separation zone and thermoacoustic oscillations, with characteristic times 10 ms and 1 ms correspondingly.

Suggested Citation

  • Sergey B. Leonov, 2018. "Electrically Driven Supersonic Combustion," Energies, MDPI, vol. 11(7), pages 1-35, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1733-:d:155746
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1733/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1733/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaobei Cheng & Xinhua Zhang & Zhaowen Wang & Huimin Wu & Zhaowu Wang & Jyh-Yuan Chen, 2021. "Effect of Microwave Pulses on the Morphology and Development of Spark-Ignited Flame Kernel," Energies, MDPI, vol. 14(19), pages 1-19, September.
    2. Chaolong Li & Zhixun Xia & Likun Ma & Xiang Zhao & Binbin Chen, 2019. "Numerical Study on the Solid Fuel Rocket Scramjet Combustor with Cavity," Energies, MDPI, vol. 12(7), pages 1-17, March.
    3. Muhammad Yousaf Arshad & Muhammad Azam Saeed & Muhammad Wasim Tahir & Ahsan Raza & Anam Suhail Ahmad & Fasiha Tahir & Bartłomiej Borkowski & Tadeusz Mączka & Lukasz Niedzwiecki, 2023. "Role of Experimental, Modeling, and Simulation Studies of Plasma in Sustainable Green Energy," Sustainability, MDPI, vol. 15(19), pages 1-35, September.
    4. Tadeusz Mączka & Halina Pawlak-Kruczek & Lukasz Niedzwiecki & Edward Ziaja & Artur Chorążyczewski, 2020. "Plasma Assisted Combustion as a Cost-Effective Way for Balancing of Intermittent Sources: Techno-Economic Assessment for 200 MW el Power Unit," Energies, MDPI, vol. 13(19), pages 1-16, September.
    5. Feng, Rong & Zhu, Jiajian & Wang, Zhenguo & Sun, Mingbo & Wang, Hongbo & Cai, Zun & An, Bin & Li, Liang, 2021. "Ignition modes of a cavity-based scramjet combustor by a gliding arc plasma," Energy, Elsevier, vol. 214(C).
    6. Lars Zigan, 2018. "Electric Fields in Energy and Process Engineering," Energies, MDPI, vol. 11(9), pages 1-4, August.
    7. Alexander Firsov & Valentin Bityurin & Dmitriy Tarasov & Anastasia Dobrovolskaya & Roman Troshkin & Aleksey Bocharov, 2022. "Longitudinal DC Discharge in a Supersonic Flow: Numerical Simulation and Experiment," Energies, MDPI, vol. 15(19), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1733-:d:155746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.