IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7005-d923843.html
   My bibliography  Save this article

Potential for Underground Storage of Liquid Fuels in Bedded Rock Salt Formations in Poland

Author

Listed:
  • Leszek Lankof

    (Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Wybickiego 7A, 31-261 Krakow, Poland)

  • Stanisław Nagy

    (Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland)

  • Krzysztof Polański

    (Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Krakow, Poland)

  • Kazimierz Urbańczyk

    (Ubroservice, ul. Lea 149A, 30-133 Krakow, Poland)

Abstract

The paper aims to give a universal methodology for assessing the storage capacity of a bedded rock salt formation in terms of the operational and strategic storage facilities for liquid fuels. The method assumes the development of a geological model of the analyzed rock salt formation and the determination of the salt caverns’ size and spacing and the impact of convergence on their capacity during operation. Based on this method, the paper presents calculations of the storage capacity using the example of the bedded rock salt formations in Poland and their results in the form of storage capacity maps. The maps show that the analyzed rock salt deposits’ storage capacity in northern Poland amounts to 7.1 B m 3 and in the Fore-Sudetic Monocline to 10.5 B m 3 , in the case of strategic storage facilities. The spatial analysis of the storage capacity rasters, including determining the raster volumes and their unique values, allowed us to quantify the variability of the storage capacity in the analyzed rock salt deposits.

Suggested Citation

  • Leszek Lankof & Stanisław Nagy & Krzysztof Polański & Kazimierz Urbańczyk, 2022. "Potential for Underground Storage of Liquid Fuels in Bedded Rock Salt Formations in Poland," Energies, MDPI, vol. 15(19), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7005-:d:923843
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7005/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7005/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiu, Yue & Zhou, Suyang & Wang, Jihua & Chou, Jun & Fang, Yunhui & Pan, Guangsheng & Gu, Wei, 2020. "Feasibility analysis of utilising underground hydrogen storage facilities in integrated energy system: Case studies in China," Applied Energy, Elsevier, vol. 269(C).
    2. Wu, Gang & Wei, Yi-Ming & Nielsen, Chris & Lu, Xi & McElroy, Michael B., 2012. "A dynamic programming model of China's strategic petroleum reserve: General strategy and the effect of emergencies," Energy Economics, Elsevier, vol. 34(4), pages 1234-1243.
    3. Wang, Tongtao & Yan, Xiangzhen & Yang, Henglin & Yang, Xiujuan & Jiang, Tingting & Zhao, Shuai, 2013. "A new shape design method of salt cavern used as underground gas storage," Applied Energy, Elsevier, vol. 104(C), pages 50-61.
    4. Bai, Yang & Dahl, Carol, 2018. "Evaluating the management of U.S. Strategic Petroleum Reserve during oil disruptions," Energy Policy, Elsevier, vol. 117(C), pages 25-38.
    5. Zhang, Xiao-Bing & Qin, Ping & Chen, Xiaolan, 2017. "Strategic oil stockpiling for energy security: The case of China and India," Energy Economics, Elsevier, vol. 61(C), pages 253-260.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhen & Tang, Yuk Ming & Chau, Ka Yin & Chien, Fengsheng & Iqbal, Wasim & Sadiq, Muhammad, 2021. "Incorporating strategic petroleum reserve and welfare losses: A way forward for the policy development of crude oil resources in South Asia," Resources Policy, Elsevier, vol. 74(C).
    2. Zhang, Nan & Shi, Xilin & Wang, Tongtao & Yang, Chunhe & Liu, Wei & Ma, Hongling & Daemen, J.J.K., 2017. "Stability and availability evaluation of underground strategic petroleum reserve (SPR) caverns in bedded rock salt of Jintan, China," Energy, Elsevier, vol. 134(C), pages 504-514.
    3. Lankof, Leszek & Urbańczyk, Kazimierz & Tarkowski, Radosław, 2022. "Assessment of the potential for underground hydrogen storage in salt domes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Zhang, Xiao-Bing & Zheng, Xinye & Qin, Ping & Xie, Lunyu, 2018. "Oil import tariff game for energy security: The case of China and India," Energy Economics, Elsevier, vol. 72(C), pages 255-262.
    5. Li, Tianxiao & Liu, Pei & Li, Zheng, 2021. "Optimal scale of natural gas reserves in China under increasing and fluctuating demand: A quantitative analysis," Energy Policy, Elsevier, vol. 152(C).
    6. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    7. Xu, Bin & Lin, Boqiang, 2018. "Do we really understand the development of China's new energy industry?," Energy Economics, Elsevier, vol. 74(C), pages 733-745.
    8. Haitao Li & Jingen Deng & Qiqi Wanyan & Yongcun Feng & Arnaud Regis Kamgue Lenwoue & Chao Luo & Cheng Hui, 2021. "Numerical Investigation on Shape Optimization of Small-Spacing Twin-Well for Salt Cavern Gas Storage in Ultra-Deep Formation," Energies, MDPI, vol. 14(10), pages 1-22, May.
    9. Yang, Chunhe & Wang, Tongtao & Li, Yinping & Yang, Haijun & Li, Jianjun & Qu, Dan’an & Xu, Baocai & Yang, Yun & Daemen, J.J.K., 2015. "Feasibility analysis of using abandoned salt caverns for large-scale underground energy storage in China," Applied Energy, Elsevier, vol. 137(C), pages 467-481.
    10. Dariusz Knez & Omid Ahmad Mahmoudi Zamani, 2023. "Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues," Energies, MDPI, vol. 16(18), pages 1-17, September.
    11. Yin, Linfei & Zhang, Bin, 2023. "Relaxed deep generative adversarial networks for real-time economic smart generation dispatch and control of integrated energy systems," Applied Energy, Elsevier, vol. 330(PA).
    12. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    13. Llamas, Bernardo & Laín, Carlos & Castañeda, M. Cruz & Pous, Juan, 2018. "Mini-CAES as a reliable and novel approach to storing renewable energy in salt domes," Energy, Elsevier, vol. 144(C), pages 482-489.
    14. Bai, Y. & Dahl, C.A. & Zhou, D.Q. & Zhou, P., 2014. "Stockpile strategy for China׳s emergency oil reserve: A dynamic programming approach," Energy Policy, Elsevier, vol. 73(C), pages 12-20.
    15. Zhu, Bo & Deng, Yuanyue & Hu, Xin, 2023. "Global energy security: Do internal and external risk spillovers matter? A multilayer network method," Energy Economics, Elsevier, vol. 126(C).
    16. Jiao, Jian-Ling & Han, Kuang-Yi & Wu, Gang & Li, Lan-Lan & Wei, Yi-Ming, 2014. "The effect of an SPR on the oil price in China: A system dynamics approach," Applied Energy, Elsevier, vol. 133(C), pages 363-373.
    17. Wei, Xinxing & Shi, Xilin & Li, Yinping & Li, Peng & Ban, Shengnan & Zhao, Kai & Ma, Hongling & Liu, Hejuan & Yang, Chunhe, 2023. "A comprehensive feasibility evaluation of salt cavern oil energy storage system in China," Applied Energy, Elsevier, vol. 351(C).
    18. Liu, Wei & Jiang, Deyi & Chen, Jie & Daemen, J.J.K. & Tang, Kang & Wu, Fei, 2018. "Comprehensive feasibility study of two-well-horizontal caverns for natural gas storage in thinly-bedded salt rocks in China," Energy, Elsevier, vol. 143(C), pages 1006-1019.
    19. Lin, Boqiang & Xu, Bin, 2018. "How to promote the growth of new energy industry at different stages?," Energy Policy, Elsevier, vol. 118(C), pages 390-403.
    20. Xiang, Yue & Cai, Hanhu & Liu, Junyong & Zhang, Xin, 2021. "Techno-economic design of energy systems for airport electrification: A hydrogen-solar-storage integrated microgrid solution," Applied Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7005-:d:923843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.